# 3/01/2018 Class Notes 

Jonathan Schoene

## Prim's Algorithm:

- Pick any vertex V, then pick any edge with the lowest weight connected to vertex V.
- Repeat. Taking the edge with the lowest weight that connects the existing tree to a vertex not already connected to it.


## How many spanning trees does a connected graph have?

- Example:

- Let the edge from d to c be represented by e1
- First count the trees in the graph including e1
* There are 3 possible edges to remove on the left side of e1
* There are 4 possible edges to remove on the right side of e1
* This means that including e1, there are 12 total possible spanning trees $(4 * 3)$
- Now count the trees in the graph not including e1
* There are 7 possible edges to remove and removing any of them results in a spanning tree.
- Therefore are 19 possible spanning trees total because $12+7=19$

How many spanning trees are there on $n$ labelled vertices if any edge is allowed?

- Counting spanning subtrees of a complete graph of order $n$
- Lets try this with $\mathrm{n}=4$

- Get rid of an edge

- Let the edge from vertex d to a be e2

We want to count the number of spanning trees in our graph G including e2, as well as not including e2.

- Number of trees including e2:

2 on left $* 2$ on right $=4$ total
Number of trees not including e2:
4 total
All together there are 8 in total.

- Now lets try it including the original edge we removed (the edge from vertex b to vertex c). Call it e1.

- Now we repeat the same process as above. In our new graph, if we include e2, we have 4 possible spanning trees. If we don't include our edge e2 we have another 4 possible spanning trees.
If we multiply these together we get 16 total possible spanning trees.
- The equation to calculate the number of spanning subtrees for a complete graph is $n^{n-2}$


## Matrix Tree Theorem:

- Given a connected graph G from the matrix A where:
$A_{i j}=\operatorname{deg}\left(V_{i}\right)$
$A_{i j}=-1$ if $V_{i} V_{j}$ exist within $\mathrm{E}(\mathrm{G}), 0$ if otherwise
- Example:

- $A=\left[\begin{array}{ccccc}2 & -1 & 0 & 0 & -1 \\ -1 & 3 & -1 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & -1 & -1 & 3 & -1 \\ -1 & 0 & 0 & -1 & 2\end{array}\right]$
- Then the number of spanning trees of our graph is equal to the determinant of the matrix $\left[A_{i j}\right]$ where this is any cofactor of the matrix obtained by removing row i and column j
- This gives us an easy way to computer the number of spanning trees even if the graph is really large.

