MATH 451 - Class Notes

2/6/2017
Scribe: Megan Wysocki

Summary:

- Complement of a Graph
- Diameter of a Graph
- Bipartite Graphs

Def: The complement of a graph G denoted \bar{G} is the graph with the same vertices as G but every edge of \bar{G} is not in G and vice-versa.

AKA \bar{G} has the same vertices as G but every edge in G is not an edge in \bar{G} ad every edge in \bar{G} is not in G.

Theorem: If G is disconnected then \bar{G} is connected.

Proof: Suppose G is disconnected. Let X and Y be any two vertices of G (or \bar{G}).
Case 1: Suppose that X and Y are not adjacent in G. Then XY is an element of E(G). So, X and Y are connected in \bar{G}.
Case 2: Suppose that X and Y are adjacent in G . Since G is disconnected, there must be some other vertex V in $V(G)$ such that x is not connected to V and y is not connected to V. Since UV is not an element in $E(G)$ and XV is an element in $E(G)$ and likewise VY is not an element in $E(G)$ and VY is an element in $\mathrm{E}(\mathrm{G})$. SO, $(\mathrm{X}, \mathrm{V}, \mathrm{Y})$ is a walk in \bar{G}. Therefore, X and Y are connected in \bar{G}.

Last class we proved...

Theorem: If G is a graph of order at least 3 with 2 vertices U, V such that $G-U$ and G-V are both connected then G is connected

Now we want to prove:
Theorem: If G is a connected graph of order at least 3 then there exists 2 vertices U and V such that G-U and G-V are both connected.

Proof: Take any two vertices in G such that the distance between them is equal to the diameter of G. Lets call these vertices U and V .
Claim: G-U and G-V are both connected.
Lets show that G-U is not connected. Then, there exists two vertices where there exists no path between them. Suppose one of these vertices is V, the other we call W. Since V and W were connected in G, there was a path from V to W in G that went through the vertex U. Every path from V to W in G passes through the vertex U . So, the distance from V to W is greater than the distance from V to U . This is a contradiction with the distance from U to V being the diameter of G .

Def: the diameter of a graph G is the greatest distance between any two vertices X and Y in the graph G
Let the graph below be graph G:

Ex. 1 The diameter of vertices A and E is 3 because $\mathrm{AB}, \mathrm{BD}, \mathrm{DE}=$ distance of 3 .
Ex. 2 The diameter of vertices A and F is 3 because $\mathrm{AB}, \mathrm{DC}, \mathrm{CF}=$ distance of 3
Theorem: If G has order at least 3 then: G is connected iff there exist U, V is an element in $V(G)$ AND G is connected iff G-U and G-V are connected, and vise-versa Does there exist a graph G such that G and \bar{G} are both connected?

Ex 1. Graph G =

Note: Both of the graphs above are P_{4} and we can say that yes, there exists a graph such that G and \bar{G} are both connected.

Ex 2. Graph G =

The image above is equivalent to the image below if we drag the vertices around to get rid of

Note: Both of the graphs above are C_{5} and there exists a graph such that G and \bar{G} are both connected.

A graph G is called bipartite if the vertices of G can be partitioned into two sets U and V such that every edge of G connects a vertex of U with a vertex of V .

Ex. 1 (As you can see below, the vertices of G are partitioned into two sets U and V where every edge of G connects a vertex of U with a vertex of V .)

Ex. 2 - This graph can be considered a bipartite graph although we did not intend to create a bipartite graph. We can consider vertices C and B as part of set U and vertices A, E, and D a partition of set V.

Ex. 3 - Is this bipartite? -NO, because it has a 3-cycle.

Ex. 3 - Is this bipartite? -YES, take opposite corners.

Ex. 4 - Is this bipartite? -NO, not possible.

C_{n} is a bipartite iff n is even.
Note: if any graph G contains an odd cycle as the subgraph,then it can't be bipartite.
Theorem: A graph G is bipartite iff it has no odd cycles as subgraphs
Proof: (You must show forward and reverse proof when iff appears in theorem)
Forward Proof: First we want to show that if G is bipartite, it has no odd cycles. If G has an odd cycle, then there s no way to partition the vertices around that cycle into U and V so it is not bipartite.

Reverse Proof: Suppose G has no odd cycles. We want to show G is bipartite. Suffices to prove that any connected components of G is bipartite. Suppose G is connected and has no odd cycles. Lets pick the element U in $\mathrm{V}(\mathrm{G})$. Let $U=\{$ Visanelementof $V(G): d(U, V)$ iseven $\}$ and $V=\{$ Visanelementof $V(G): d(U, V) i s o d d\}$
Claim: the partition into U and V makes G a bipartite graph.
Need to show that there are no edges between vertices of U (or between vertices of V). Let's prove this for U. Suppose there exists X,Y element in U. So that, XY is an element in E(G). Since $\mathrm{d}(\mathrm{X}, \mathrm{U})=2 \mathrm{~s}$ is even, there exists a path $\left[U, V_{1}, V_{2}, \ldots, V_{2 s-1}, X\right]$ from X to $\mathrm{U} . \mathrm{d}(\mathrm{Y}, \mathrm{U})=2 \mathrm{t}$. There exists a path $\left[U, W_{1}, W_{2}, \ldots, W_{2 t-1}, Y\right]$. Suppose that $\left[V_{i}\right]$ is the last vertex that appears in both of these paths. (Note: that $\left[V_{i}=W_{i}\right]$, the index where it appears in both paths are the same). Let's construct a cycle: $\left(V_{i}, V_{i+1}, V_{i+2}, \ldots, X, Y, W_{2 t-1}, W_{2 t-2}, \ldots, W_{i}\right)$. It is a cycle of length $2 \mathrm{~s}+2 \mathrm{t}-\mathrm{i}-\mathrm{i}+1$. So, $(2 \mathrm{~s}+2 \mathrm{t}-\mathrm{i}-\mathrm{i}+1)=$ odd cycle because of the plus 1 . Then G contains an odd cycle. Note: the proof for W is the same as above and can also be found in the book.

