Lesson 4.4 Notes

- A spanning tree of G is a spanning subgraph of H of a connected graph G such that H is a tree.
- Example: Determine the number of spanning trees of the graph:

- Solution: Every spanning tree of G cannot have every edge of each cycle. We make take note of the number of spanning trees that have E4 and those that do not. First any spanning tree that does not have E4 must have five of the following: E1, E2, E3, E5, E6, and E7. Therefore, there are 6 spanning trees that do not contain E4. Then, any spanning tree that contains E4 must not contain exactly one of E1, E3, and E6 and must not contain exactly one of E2, E5, and E7. Therefore, there are $3 * 3=9$ spanning trees that contain E4. Therefore, there are $6+9=15$ spanning trees of G.
- The Cayley Tree Formula is the formula that computes the number of spanning trees of the graph $G=K_{n}$, where $V(G)=\left\{v_{1}, v_{2}, \ldots . ., v_{n}\right\}$, which is equivalent to the number of distinct trees with vertex set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . ., \mathrm{v}_{\mathrm{n}}\right\}$.
- Arthur Cayley established this formula in 1889.
- Theorem 4.15: The number of distinct trees of order n with a specified vertex set is $\mathrm{n}^{\mathrm{n}-2}$.
- Proof: First note that the statement is true for $\mathrm{n}=1$ (just one graph: K_{1}) and for $\mathrm{n}=2$ (just one graph: K_{2}). For $n \geq 3$ we will give a bijection between the set T_{S} of all trees having vertex set S (with $|S|=n$) and the set S^{n-2} of sequences of length $n-2$. (We use a general n-element set S instead of specifying $\{1,2, \ldots, n\}$ because we have to apply an induction assumption to different subsets of our starting set of vertices.)
- For $|S| \geq 3$ define the function f_{s} recursively by $\left.f_{s}(T)=\left(a_{1}, f_{s \backslash\{b 1\}\}} T_{0}\right)\right)$, where $b 1$ is the leaf of T with minimum label, a_{1} is the label on the unique vertex of T adjacent to $b 1$, and T_{0} $=T-b 1$. The recursion starts with $f_{s}(T)$ the empty string if $|S|=2$. We show that $f S$ is a bijection. Note that for $|S|=3$, the only isomorphism type of tree is the path P3. There
are three different labeled graphs P3 with vertices $\{1,2,3\}$, and the function f_{s} from T_{s} to S is given by the middle vertex of the path, which clearly gives a bijection.
- Claim: The number of times i occurs in $f_{S}(T)$ is $\operatorname{deg}_{\mathrm{T}}(\mathrm{i})-1$. Why? The vertex label i occurs in $f_{s}(T)$ once for each time one of its neighbors is the minimum labeled leaf in the remaining tree. Before the recursion ends, $\operatorname{deg}_{\mathrm{T}}(\mathrm{i})-1$ of the neighbors of vertex i must have achieved the status of minimum labeled leaf and have been removed; each time i is appended to the sequence $f_{s}(T)$. After these $\operatorname{deg}_{T}(i)-1$ neighbors have been removed, i is a leaf. The label i cannot be added to the sequence again. It could only be added to the sequence if it were the neighbor of another leaf, but that could only happen if the remaining tree were K_{2}, whose associated sequence is empty.
- Now we show that fS is one-to-one, by induction. We have already observed the $|\mathrm{S}|=3$ case. Assume $\mathrm{n} \geq 4$ and for any two different trees with vertex set $\left|\mathrm{S}_{0}\right|<\mathrm{n}, \mathrm{f}_{50}\left(\mathrm{~T}_{1}\right) \neq$ $f_{50}\left(T_{2}\right)$. Let $|S|=n$, and let T_{1} and $T_{2}, T_{1} \neq T_{2}$, be trees with vertex set S. We will show that $\mathrm{f}_{\mathrm{s}}\left(\mathrm{T}_{1}\right) \neq \mathrm{f}_{\mathrm{s}}\left(\mathrm{T}_{2}\right)$.
- Case 1) The lowest labeled leaf c_{1} of T_{2} is different from the lowest labeled leaf b_{1} of T_{1}. Without loss of generality $b_{1}<c_{1}$. Then b_{1} is not a leaf of T_{2} (by minimality) of c_{1}, so deg T_{2} $\left(b_{1}\right)>1$, so b_{1} occurs in $f_{s}\left(T_{2}\right)$, but not in $f_{s}\left(T_{1}\right)$. So $f_{s}\left(T_{1}\right) \neq f_{s}\left(T_{2}\right)$.
- Case 2) The lowest labeled leaf of T_{2} is the same as the lowest labeled leaf b_{1} of T_{1}, but the neighbor of b_{1} in T_{2} is different from the neighbor of b_{1} in T_{1}. Then the first entry of $f S(T 2)$ is different from the first entry in $f_{s}\left(T_{1}\right)$. So $f_{s}\left(T_{1}\right) \neq f_{s}\left(T_{2}\right)$.
- Case 3) The lowest labeled leaf of T_{2} is the same as the lowest labeled leaf b_{1} of T_{1}, and the neighbor of b_{1} in T_{2} is the same as the neighbor a_{1} of b_{1} in T_{1}, but $T_{1}-b_{1} \neq T_{2}-b_{1}$. Then $f_{s}\left(T_{1}\right)=\left(a_{1}, f_{s \backslash \backslash b 1\}}\left(T_{1}-b_{1}\right)\right)$ and $f_{s}\left(T_{2}\right)=\left(a_{1}, f_{\text {SY(b1\} }}\left(T_{2}-b_{1}\right)\right)$. By the induction assumption, $f_{S \backslash[b 1\}}\left(T_{1}-b_{1}\right) \neq f_{s \backslash\{b 1\}}\left(T_{2}-b_{1}\right)$. So $f_{s}\left(T_{1}\right) \neq f_{s}\left(T_{2}\right)$.
- Thus f_{s} is one-to-one.
- It remains to show for $|S| \geq 3$ the function $f_{s}: T_{S} \rightarrow S^{n-2}$ is onto. Again, we use induction on n . For $|\mathrm{S}|=3$, the function is onto (see above). Assume $\mathrm{n} \geq 4$ and for any $|\mathrm{S}|=\mathrm{m}<\mathrm{n}$ and any sequence $a=\left(a_{1}, a_{2}, \ldots, a_{m-2}\right) \in S^{m-2}$, there exists a tree T with vertex set S and $f_{S}(T)=a$. Now let $|S|=n$ and $a=\left(a_{1}, a_{2}, \ldots, a_{n-2}\right) \in S^{n-2}$. Let b_{1} be the least element of S not appearing in $\left\{a_{1}, a_{2}, \ldots, a_{n-2}\right\}$, and $a_{0}=\left(a_{2}, a_{3}, \ldots, a_{n-2}\right) \in S^{n-3}$. Thus $a_{0} \in(S \backslash$ $\{b 1\})^{n-3}$, so by induction there is a tree T_{0} with vertex set $S \backslash\left\{b_{1}\right\}$ such that $\left.f_{s \backslash\{b 1\}\}} T_{0}\right)=a_{0}$. Let T be the tree with vertex set S and $E(T)=E\left(T_{0}\right) \cup\left\{b_{1} a_{1}\right\}$. Then b_{1} is a leaf of T, and it is the leaf with lowest label (since b_{1} is the least element of S not appearing in $\left\{a_{1}, a_{2}, \ldots\right.$, $\left.\left.a_{n-2}\right\}\right)$. So $f_{s}(T)=\left(a_{1}, f_{s \backslash(b 13}\left(T_{0}\right)\right)=\left(a_{1}, a_{0}\right)=\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)$.
- Thus f_{s} is onto.
- So $f_{s}: T_{s} \rightarrow S^{n-2}$ is a bijection, and $\left|T_{s}\right|=\left|S^{n-2}\right|=n^{n-2}$.
- Example of Theorem 4.15: Let $\mathrm{n}=3$. There are 3 distinct trees of order 3 with a specified vertex set.
- Theorem 4.16: (Matrix Tree Theorem) Let G be a graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, let $A=$ $\left[a_{i j}\right]$ be the adjacency matrix of G and let $\mathrm{C}=\left[\mathrm{c}_{\mathrm{ij}}\right]$ be the $\mathrm{n} \times \mathrm{n}$ matrix, where $\mathrm{c}_{\mathrm{ij}}=\left\{\operatorname{deg} \mathrm{v}_{\mathrm{i}}\right.$ if i $=j$, and $-a_{i j}$ if $\left.\mathrm{i} \neq \mathrm{j}\right\}$ Then the number of spanning trees of G is the value of any cofactor C .
- Proof: Since $\mathrm{L}=\mathrm{MM}_{0}$, we have $\mathrm{L}_{0}=\mathrm{M}_{0} \mathrm{M}_{0}^{\mathrm{t}}$. By Cauchy-Binet formula, we have det $\mathrm{L}_{0}=\mathrm{X}$ $S \in X S \in([q] p-1)\left(\operatorname{det} M_{0}[S]\right)\left(\operatorname{det} M_{0}^{t}[S]\right)=X S\left(\operatorname{det}\left(M_{0}[S]\right)\right)^{2}\left(\because(A[S])^{t}=A^{t}[S]\right)$ and ($\operatorname{det}(\mathrm{MO}[\mathrm{S}]))^{2}$ is 1 if $S(E)$ forms a spanning tree and 0 otherwise, and a tree with p vertices has $p-1$ edges, so summing over $S \in$, RHS exactly counts the number of spanning trees of G.
- Example: Let G:

- $\mathrm{A}=\begin{array}{rrrrrr}F & 2 & -1 & 0 & 0 & -1 \\ -1 & 3 & -1 & -1 & 0 \\ \alpha \beta= & -1 & 2 & -1 & 0 \\ 0 & -1 & -1 & 3 & -1 \\ 1 & 0 & 0 & -1 & 2\end{array}$

$$
\begin{array}{ccc}
2 & -1 & 0
\end{array}
$$

- Then we solve by using the determinant of the matrix $\quad-1 \quad 3 \quad-1$.
$\begin{array}{lll}0 & -1 & 2\end{array}$
- The number of spanning trees is $2^{*}\left(3^{*} 2-\left(-1^{*}-1\right)\right)+1\left(-1^{*} 2\right)=8$.

