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Lesson 4.4 Notes

 A spanning tree of G is a spanning subgraph of H of a connected graph G such that H is a
tree.

 Example: Determine the number of spanning trees of the graph:

 Solution: Every spanning tree of G cannot have every edge of each cycle. We make take 
note of the number of spanning trees that have E4 and those that do not. First any 
spanning tree that does not have E4 must have five of the following: E1, E2, E3, E5, E6, 
and E7. Therefore, there are 6 spanning trees that do not contain E4. Then, any spanning
tree that contains E4 must not contain exactly one of E1, E3, and E6 and must not 
contain exactly one of E2, E5, and E7. Therefore, there are 3 * 3 = 9 spanning trees that 
contain E4. Therefore, there are 6 + 9 = 15 spanning trees of G.

 The Cayley Tree Formula is the formula that computes the number of spanning trees of 
the graph G = Kn, where V(G) = {v1, v2, ….., vn}, which is equivalent to the number of 
distinct trees with vertex set {v1, v2, ….., vn}.

 Arthur Cayley established this formula in 1889.
 Theorem 4.15: The number of distinct trees of order n with a specified vertex set is nn-2.
 Proof: First note that the statement is true for n = 1 (just one graph: K1) and for n = 2 

(just one graph: K2). For n ≥ 3 we will give a bijection between the set TS of all trees 
having vertex set S (with |S| = n) and the set S n−2 of sequences of length n−2. (We use a 
general n-element set S instead of specifying {1, 2, . . . , n} because we have to apply an 
induction assumption to different subsets of our starting set of vertices.)

  For |S| ≥ 3 define the function fS recursively by fS(T) = (a1, fS\{b1}(T0)), where b1 is the leaf 
of T with minimum label, a1 is the label on the unique vertex of T adjacent to b1, and T0 
= T − b1. The recursion starts with fS(T) the empty string if |S| = 2. We show that fS is a 
bijection. Note that for |S| = 3, the only isomorphism type of tree is the path P3. There 
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are three different labeled graphs P3 with vertices {1, 2, 3}, and the function fS from TS to
S is given by the middle vertex of the path, which clearly gives a bijection. 

 Claim: The number of times i occurs in fS(T) is degT (i) − 1. Why? The vertex label i occurs 
in fS(T) once for each time one of its neighbors is the minimum labeled leaf in the 
remaining tree. Before the recursion ends, degT (i) − 1 of the neighbors of vertex i must 
have achieved the status of minimum labeled leaf and have been removed; each time i is
appended to the sequence fS(T). After these degT(i) − 1 neighbors have been removed, i 
is a leaf. The label i cannot be added to the sequence again. It could only be added to 
the sequence if it were the neighbor of another leaf, but that could only happen if the 
remaining tree were K2, whose associated sequence is empty. 

 Now we show that fS is one-to-one, by induction. We have already observed the |S| = 3 
case. Assume n ≥ 4 and for any two different trees with vertex set |S0| < n, fS0(T1) ≠ 
fS0(T2). Let |S| = n, and let T1 and T2, T1 ≠ T2, be trees with vertex set S. We will show that 
fS(T1) ≠ fS(T2). 

 Case 1) The lowest labeled leaf c1 of T2 is different from the lowest labeled leaf b1 of T1. 
Without loss of generality b1 < c1. Then b1 is not a leaf of T2 (by minimality) of c1, so degT2

(b1) > 1, so b1 occurs in fS(T2), but not in fS(T1). So fS(T1) ≠ fS(T2). 
 Case 2) The lowest labeled leaf of T2 is the same as the lowest labeled leaf b1 of T1, but 

the neighbor of b1 in T2 is different from the neighbor of b1 in T1. Then the first entry of 
fS(T2) is different from the first entry in fS(T1). So fS(T1) ≠ fS(T2). 

 Case 3) The lowest labeled leaf of T2 is the same as the lowest labeled leaf b1 of T1, and 
the neighbor of b1 in T2 is the same as the neighbor a1 of b1 in T1, but T1 − b1 ≠ T2 − b1. 
Then fS(T1) = (a1, fS\{b1}(T1 − b1)) and fS(T2) = (a1, fS\{b1}(T2 − b1)). By the induction assumption,
fS\{b1}(T1 − b1) ≠ fS\{b1}(T2 − b1). So fS(T1) ≠ fS(T2). 

 Thus fS is one-to-one. 
 It remains to show for |S| ≥ 3 the function fS : TS → Sn−2 is onto. Again, we use induction 

on n. For |S| = 3, the function is onto (see above). Assume n ≥ 4 and for any |S| = m < n 
and any sequence a = (a1, a2, . . . , am−2) ∈ Sm−2 , there exists a tree T with vertex set S and 
fS(T) = a. Now let |S| = n and a = (a1, a2, . . . , an−2) ∈ Sn−2 . Let b1 be the least element of S 
not appearing in {a1, a2, . . . , an−2}, and a0 = (a2, a3, . . . , an−2) ∈ Sn−3 . Thus a0 ∈ (S \ 
{b1})n−3 , so by induction there is a tree T0 with vertex set S \ {b1} such that fS\{b1}(T0 ) = a0 . 
Let T be the tree with vertex set S and E(T) = E(T0) ∪ {b1a1}. Then b1 is a leaf of T, and it is 
the leaf with lowest label (since b1 is the least element of S not appearing in {a1, a2, . . . , 
an−2}). So fS(T) = (a1, fS\{b1}(T0)) = (a1, a0) = (a1, a2, . . . , an−2). 

 Thus fS is onto. 
 So fS : TS → Sn−2 is a bijection, and |TS| = |Sn−2 | = nn−2 .
 Example of Theorem 4.15: Let n = 3. There are 3 distinct trees of order 3 with a specified 

vertex set.
 Theorem 4.16: (Matrix Tree Theorem) Let G be a graph with V(G) = {v1,v2,…,vn}, let A = 

[aij] be the adjacency matrix of G and let C = [cij] be the n x n matrix, where cij={deg vi if i 
= j, and –aij if i ≠ j} Then the number of spanning trees of G is the value of any cofactor C.



 Proof: Since L = MM0 , we have L0 = M0Mt
0 . By Cauchy-Binet formula, we have detL0 = X 

S∈ X S∈( [q] p−1 ) (det M0[S])(det Mt
0 [S]) = X S (det(M0[S]))2 (∵ (A[S])t = At[S]) and 

(det(M0[S]))2 is 1 if S(E) forms a spanning tree and 0 otherwise, and a tree with p 
vertices has p − 1 edges, so summing over S ∈, RHS exactly counts the number of 
spanning trees of G.

 Example: Let G: 







  A = 

F

αβ=

2 −1 0 0 −1
−1 3 −1 −1 0
0 −1 2 −1 0
0 −1 −1 3 −1
1 0 0 −1 2

 Then we solve by using the determinant of the matrix 
2 −1 0

−1 3 −1
0 −1 2

.

 The number of spanning trees is 2*(3*2-(-1*-1))+1(-1*2)=8.
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