Class Notes

Tyler Howard

February 22, 2018

Remember from last time:
Theorem: G is a tree if and only if every edge of G is a bridge.
Claim: If G is a tree of order n then G has size $n-1$.
Definitions:

1. A tree is a connected graph with no cycles.
2. A bridge is a edge which when removed, disconnects the graph

Claim: If G is a tree of order n then G has size $n-1$.

Proof. (Want to use Induction)
(Decide base case, induction case, and variable to perform induction on)
(Base case) See that if $n=1$, the graph G has order one and a size of $n-1$, meaning it is the trivial tree with 0 edges.
Can also see that if $n=2$, then the resulting tree has two vertices and one edge and follows the pattern that the size is $n-1$.
(Induction Step)
Assume the theorem is true for all trees of order n.
(Need to prove theorem is true for the next order of trees or $n+1$)
Let T be a tree with $n+1$ vertices.
(Goal: Prove T has n edges)
If this is true it cannot have order $n=1$, it must have order at least two and thus is not the trivial tree.
(We proved last class that if T is a nontrivial tree then T has at least one vertex of degree 1)
By our previous theorem, we know there must exist a vertex of degree 1 in T, we will call it v.
Consider if this vertex was removed: $T-v=S$.
Note S has order n now.
It is not possible that removing a vertex from a tree could cause a cycle.
(Must show S is still connected)
Let u and w be any two vertices of S, so that u and w are also vertices of T and there exists a path from u to w in T.
This path cannot include v, since v has degree 1 and thus cannot be in the middle of any path.
Therefore this path still exists in S so S is still connected with the removal of v.
(Easier way would be to say that since v is a leaf node, removing it would not change the connectivity of T. So $T-v=S$. S is connected.)
(Induction) By our induction hypothesis, since S has order n, S has size $n-1$. T has one more vertex than S and one more edge.
(So our claim is proved.)

Can now do the same thing for forests.
Theorem: If G is a forest with k components (trees) and order n then the size of G is $n-k$.

Proof. Let $T_{1}, T_{2}, \ldots T_{k}$ be the components of G.
Let the order of T_{i} be n_{i}.
By the previous theorem for trees, the tree T_{i} has exactly $n_{i}-1$ edges.
The total number of edges in G is the total number of edges in each component,
ie: $\sum_{i=1, k}\left(n_{i}-1\right)=\sum_{i=1, k}\left(n_{i}-k\right)=n-k$

Theorem: Any connected graph of order n has size at least $n-1$

Proof. (Want to use Contradiction)
Note that the theorem is true for $n=1$ (trivial) and $n=2$ (one edge).
Suppose that the theorem is false. In other words, suppose there exists graphs of order n with size m where $m<n-1$ or $m<=n-2$

Among all graphs that violate the theorem, pick one with the smallest n and least m and call it G (Prove true for $n=1,2)$.
(Mini Claim): G must have a vertex of degree 1.
Suppose it didn't. Then by summing degrees of the vertices we have:
$2 m=\sum_{v \epsilon V(G)} \operatorname{deg}(v) \geq 2 n$, by the first theory of graph theory.
In this case: $2 m \geq 2(m+2)$ which isn't possible.
So the claim must be true by contradiction.
Call this vertex of degree $1, v$.
Let $G_{0}=G-v$
See that since v is a leaf node, we still have a connected graph. But the resulting graph G_{0} has 1 fewer vertex and 1 fewer edge.
So, we can prove even even smaller ones, and thus G violates the theorem and is the smallest possible counterexample possible.

What we did today in summary:

1. More on working with trees/forests and related proofs
2. Problem solving skills and proof practice
3. Further help with Contradiction/Induction strategies
