Class Notes

Laurel McNeal

Febuary 20,2018

1 Homework Problem Review

Question One: Draw all connected graphs of 5 vertices with the distance between any two distinct vertices is odd.

This is K5, the only graph with those properties

Proof: Since distance in this graph can't be more than 4 the only odd distance are 1 and 3 . If 2 vertices are distance 3 then the path between them would contain two vertices of distance 2 . Meaning the distance must be 1 between all points for the conditions to be met, and K5 is the only connected graph.

Question Two: Draw all disconnected graph with previous conditions.

These are only the six disconnected graphs above.

2 Bridges, Forest, and Trees

Definition 1: A bridge in a connected graph is an edge with the property that if the edge is removed from the graph the graph is no longer connected.

The edge c,d is a Bridge, but the edge f, g is not a Bridge.

Definition 2: A graph which has no cycles is called a forest.

The two components above form a Forest.

Definition 3: A tree is a connected forest.

The above image is a tree

3 Claims About Trees

3.1 Claim 1:

If G is a tree, then any edge in the graph in G is a bridge.

Proof: suppose G is a tree with atleast two vertices (otherwise G has no edges and follows trivially). Let e be an edge in G, with the vertices u and v. Assume e is not a bridge. Then there exist a cycle in G making G not a tree, Contradicting the assumptions that G is a tree. Meaning G must be a bridge.

3.2 Claim 2:

If G is a connected graph where every edge is a bridge the G is a tree.

Proof: Suppose G is a connected graph where every edge is a bridge and G is not a tree. For G to not be a tree G must contain a cycle, $\mathrm{U} 1, \mathrm{U} 2, \ldots, \mathrm{U} 1$. You can remove any edge from the cycle and the graph is still connected. meaning the edges in the cycle are not bridges, a contradiction that every edge is a bridge. Meaning G is tree.

