Notes 2-15

Darian Hegberg

February 2018

Continuation of $2 / 13$ Notes
Definition: An irregular graph is a graph in which no two distinct vertices have the same degree.

Example: Trivial Graph

Theorem: There do not exist any non-trivial irregular graphs.
Proof: If a graph has order n then all of its n vertices have degrees between (0 and $\mathrm{n}-1$): $0,1,2,3, \ldots,(\mathrm{n}-1)$

Suppose for contradiction that G is an irregular graph of order n . Thus G must have a vertex with every degree from 0 to $n-1$. So one vertex has degree 0 (connected to nothing) and one has degree n-1 (connected to everything)

This is a contradiction.

1 Isomorphisms

We want a mathematical definition of what it is for two graphs to be the same Definition: If G and H are two labelled graphs then

$$
\begin{equation*}
\varphi: V(G) \rightarrow V(H) \tag{1}
\end{equation*}
$$

is an isomorphism (of Graphs).
If φ is a bijection and

$$
\begin{equation*}
u, v \in V(G) \quad \text { then } \quad u, v \in E(G) \quad \text { if and only if } \varphi(u) \varphi(v) \in E(H) \tag{2}
\end{equation*}
$$

Figure 1: Two labelled graphs are isomorphic if there exists an isomorphism between them Two unlabelled graphs are isomorphic if there exists a way to assign labels to vertices in a way that makes them isomorphic.

In order for two graphs to be isomorphic they need to be the same order and size

If G and H are isomorphic then they have the same degree sequence
How do we tell if two graphs are isomorphic? What are the possible unlabelled graphs of small order?

Figure 2: $\mathrm{n}=2$

Figure 3: $\mathrm{n}=3$

Figure 4: n=4

There is a relationship between the number of vertices n and the number of non isomorphic unlabelled graphs However we do not know a formula in terms of n for this sequence.

3

Theorem: G and H are isomorphic if $\overline{\mathrm{G}}$ is isomorphic to $\overline{\mathrm{H}}$
Write $\mathrm{G} \cong \mathrm{H}$ if G is isomorphic to H . -Determine whether the following graphs are isomorphic.

Figure 5: (Left): Dseq-4,3,3,2,1,1
Figure 6: (Right): Dseq - 4,3,3,2,1,1
-If yes we can see this by writing down the isomorphism. -If not we need to demonstrate some property of one of the graphs that isnt preserved in the other.

Check \rightarrow Order: 6, Size: 7, Degree Sequence: Same
In this case, distance between the vertices of degree 1 is not preserved.
Another way is to look at the neighbors of the unique vertices. In this case we examine the unique vertex of degree 4.

Note: No vertex of degree 2 has neighbors of 2 and 4 for the right graph. Check: The distances between 2 points and the existence of cycles of different sizes.

Theorem: The property of being an isomorphic graph is an equivalence relation

Proof: Transitivity, Suppose $F \cong$ and $G \cong H$ Let $\varphi: F \rightarrow G$ be an isomorphism and $\psi: \mathrm{G} \rightarrow \mathrm{H}$ be an isomorphism

Then $\varphi \times \psi: \mathrm{F} \rightarrow \mathrm{H}$: Check that this is an isomorphism.
An isomorphism from G to itself is called an automorphism.

4

In K_{n} any permutation of the vertices is an automorphism. The set of automorphisms of a graph form a group under composition.

- Automorphism group of K_{n} is S_{n}
- Frudnts Theorem: For any finite group G. There exist a graph whose automorphsim group is G.

