Class Notes

Tyler Simonds

2-13-2018

Theorem 1. If $d_{1} \geq d_{2} \geq d_{3} \geq \ldots \geq d_{n}$ is a degree sequence, then it is graphical if and only if the sequence $\left.d_{2}-1, d_{3}-1, \ldots, d_{(} d_{1}+1\right)-1, d_{(}\left(d_{1}+2\right), \ldots, d_{n}$ is graphical.

Example 1. 5,4,3,3,3,1,1,1,1 is graphical iff 3,2,2,2,0,1,1,1 is graphical
Proof of the previous theorem: Must prove both ways since if and only if statement (\Leftarrow) : Suppose $\left.\left.d_{2}-1, d_{3}-1, \ldots, d_{(} d_{1}+1\right)-1, d_{(} d_{1}+2\right), \ldots, d_{n}$ is graphical. Then there exists a graph on $n-1$ vertices: $v_{2}, v_{3}, \ldots, v_{n}$ where $\operatorname{deg}\left(v_{2}\right)=d_{2}-1, \operatorname{deg}\left(v_{3}\right)=d_{3}-1$. Produce a new graph on n vertices by adding the vertex v_{1} to the hypothesized graph and connecting it to $v_{2}, v_{3}, \ldots, v_{(}\left(d_{1}+1\right)$ and not connecting it to any other vertices. This graph has degree sequence $d_{1}, d_{2}, \ldots, d_{n}$. Therefore (\Leftarrow) is proved for the theorem.

Now we must prove (\Rightarrow) : We will prove this by contradiction.
Suppose there exists some sequence $d_{1}, d_{2}, \ldots, d_{n}$ which is graphical, but $d_{2}-1, d_{3}-$ $\left.\left.1, \ldots, d_{(} d_{1}+1\right)-1, d_{(} d_{1}+2\right), \ldots, d_{n}$ is not graphical. Among all graphs with degree sequence $d_{1}, d_{2}, \ldots, d_{n}$ take the one where the sums of the degrees of the vertices connected to v_{1} is the highest, $\operatorname{deg}\left(v_{1}\right)=d_{1}$

Note: By our assumption, v_{1} can not be connected to all of the largest remaining vertices. So, v_{1} must be connected to some vertex v_{r} where $\operatorname{deg}\left(v_{r}\right)>d_{s}$ for some s and v is not connected to the vertex v_{s} with degree d_{s}. So v_{s} is connected to some vertex v_{t} that v_{r} is not connected to.

We can now construct a new graph G^{\prime} with the same vertices and edges except for the edges $v_{1} v_{r}$ and $v_{s} v_{t}$. Instead we include the edges $v_{1} v_{s}$ and $v_{r} v_{t}$. Every vertex in G^{\prime} has the same degree as in G. If we look at the sums of the degrees of vertices connected to v_{1} in G', it is bigger than in G. This is a contradiction with the assumption that G was chosen to have the sum be as big as possible. So, there is a graph that exists where v_{1} is connected to all other vertices with largest degrees. Then we can get a graph with degree sequence $\left.d_{2}-1, d_{3}-1, \ldots, d_{(}\left(d_{1}+1\right)-1, d_{(} d_{1}+2\right), \ldots, d_{n}$ by removing v_{1} from the graph Therefore (\Rightarrow) is proved.

Example: Is 5,4,3,3,2,2,2,1,1,1 graphical?
To solve this we can use the Theorem that we just proved.
We know that $5,4,3,3,2,2,2,1,1,1$ is graphical if and only if $3,2,2,1,1,2,1,1,1$ is graphical

We are not certain if $3,2,2,1,1,2,1,1,1$ is graphical so we can rearrange the degree sequence and do the computation again.
$3,2,2,1,1,2,1,1,1 \rightarrow 3,2,2,2,1,1,1,1,1$
3,2,2,2,1,1,1,1,1 is graphical if and only if $1,1,1,1,1,1,1,1$ is graphical.
$1,1,1,1,1,1,1,1$ is graphical, therefore $5,4,3,3,2,2,2,1,1,1$ is graphical.
Example: Is $7,7,4,3,3,3,2,1$ graphical?
To solve this we can again use the Theorem that we just proved.
We know that $7,7,4,3,3,3,2,1$ is graphical if and only if $6,3,2,2,2,1,0$ is graphical.
We are not certain if $6,3,2,2,2,1,0$ is graphical so we will compute again.
$6,3,2,2,2,1,0 \rightarrow 2,1,1,1,0,-1$ which is not possible.
Therefore $7,7,4,3,3,3,2,1$ is not graphical.
Definition: For graph G of order n with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and edges $e_{1}, e_{2}, \ldots, e_{m}$ we say the AdjacencyMatrix of G is the $n x n$ matrix $A=\left[a_{i} j\right]$ where $a_{i} j=\left\{1\right.$, if v_{i} is adjacent to v_{j} and 0 otherwise $\}$

Definition: The IncidenceMatrix B is an $n x m$ matrix $B=\left[b_{i} j\right]$ where $a_{i} j=\{1$, if v_{i} is incident to v_{j} and 0 otherwise $\}$

Theorem: The $i j$ entry of A^{k} is the number of walks of length k from v_{i} to v_{j}

