MATH 451 - Class Notes

2/1/2018
Scribe: Kathryn Bafford
Defn: A walk is closed if the last vertex in the walk is the same as the first. A walk is open if the last vertex is different from the first.

Defn: A trail which is closed is called a circuit.
Defn: A path which is closed is called a cycle.

A cycle is (a, b, c, d, e, a)

A k-cycle is a cycle with exactly k-vertices or k-edges. A cycle is odd of its length is odd, and even if its length is even.

Defn: A graph G is connected if for any two vertices u and v in G there exists a walk from u to v.
Defn: A component of a graph is a connected subgraph which is not a subgraph of any larger connected subgraph. Notation: $k(\mathrm{G})=$ number of components of G. $k(G)=1$ if G is connected and $k(G)>1$ if G is disconnected.

Same vertices and basic shape, but one is connected and the other is not.

Recall: An equivalence relation is a relation a~b:

1. If $\mathrm{a} \sim \mathrm{b}$, then $\mathrm{b} \sim \mathrm{a}$
2. $\mathrm{a} \sim \mathrm{a}$ for all a
3. if $\mathrm{a} \sim \mathrm{b}$ and $\mathrm{b} \sim \mathrm{c}$, then $\mathrm{a} \sim \mathrm{c}$

Proposition: The property of a vertex being connected to another vertex by a walk in a graph is an equivelance relation.

We need to show a walk is reflexive, symmetric, and transitive.

Proof:

Reflexive: The walk from any vertex to itself without going anywhere else connects to any vertex itself.
Symmetric: If a vertex u in out graph is connected to v , then there exists a walk $\left(u, v_{1}, v_{2}, \ldots, v\right)$ from u to v. Then $\left(v, \ldots, v_{2}, v_{1}, u\right)$ is a walk from v to u.
Transitive: Suppose that a vertex u is connected to vertex v and vertex v is connected to vertex w. Since u is connected to v, there exists a walk $\left(u, v_{1}, v_{2}, \ldots, v\right)$ and since v is connected to w, there exists a walk $\left(v, w_{1}, w_{1}, \ldots, w\right)$. Therefore the walk $\left(u, v_{1}, v_{2}, \ldots, v, w_{1}, w_{2}, \ldots, w\right)$ is a walk from u to w. Therefore, u and w are connected. Q.E.D.

Defn: The distance from vertex u to vertex v in graph $\mathrm{G}(d(u, v))$ is the length of the shortest walk from u to v.

If u and v are connected by an edge then the distance is 1 .
Defn: A geodesic from u to v is a walk from u to v of length $d(u, v)$.
Proposition: Any geodesic is a path.
Proof: Suppose a geodesic repeats the vertex w on the way from u to v. Then the geodesic looks like:
$\left(u, v_{1}, v_{2}, \ldots, v_{i}, w, v_{i+1}, \ldots, v_{j}, w, v_{j+1}, \ldots, v_{k}, v\right)$
Then $\left(u, v_{1}, v_{2}, \ldots, v_{i}, w, v_{j+1}, \ldots, v_{k}, v\right)$ is a shorter walk. So the original cannot be a geodesic. Q.E.D.

Theorem: If G is a graph of order at least 3 which contains two vertices u and v such that G-u and G-v are both connected, then G is connected.

Proof: Suppose we have a graph G of order at least 3 with two vertices u and v such that G-u and G-v are connected. Let x, y be any two vertices in G. Need to show there is a walk from x to y in G.
Case 1: Suppose x and y are not both u and v. Lets suppose u is neither x nor y. Both x and y are in G- u which is connected so there exists a walk from x to y.
Case 2: Suppose x and y are u and v. Since G has order at least 3 , there exists at least one more vertex w which is not u or v. Since G- u is connected, there exists a path from v to w in G- u. Since

G- v is connected, there exists a path from w to u in G- v. Combining these two walks gives a walk from u to v in G. Q.E.D.

Note: The hypothesis that G has order at least 3 is necessary.
Defn: The degree of a vertex is the number of edges in the graph which have the vertex v at one end.
Notation: degv

dega $=2$
degb $=2$
$\operatorname{degc}=3$
f is a leaf since $\operatorname{deg} f=1$
Defn: A vertex with degree 1 is a leaf.
Theorem: For any graph G,

$$
\sum_{v \in V(G)} d e g v=2 m
$$

where m is the size of G .
Proof: Count the number of edges, each edge contributes connections of exactly 2 vertices. So summing the degrees of each vertex counts every edge exactly twice. Q.E.D.

Common Graphs:

- If the vertices of a graph of order n can be relabelled as $v_{1}, v_{2}, v_{3} \ldots, v_{k}$ so the edges of G are exactly $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k-1} v_{k}$ then G is called the path. Denoted by P_{k}.

This is a picture of P_{6}

- If G is a graph of order k where the vertices can be labelled $v_{1}, v_{2}, \ldots, v_{k}$ such that the edges are $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k-1} v_{k}, v_{k} v_{1}$ then G is called the cycle of length k denoted by C_{k}

The above graphs are C_{3}, C_{4}, and C_{5}.

- If G is a graph of order n where every vertex is connected to every other vertex by an edge, then G is the complete graph of order n denoted by $k n$. If a graph G has a subgraph which is a complete graph, that subgraph is called a clique.

The graphs of k_{3} and k_{4} are shown above.
Defn: The complement of a graph G is denoted by \bar{G} and is the graph with the same vertices as

G and \bar{G} is shown above.

