Math 451 - Spring 2018

Homework 1

Due February 6, 2018
There is no problem in all mathematics that cannot be solved by direct counting.

- Ernst Mach

Turn in:

(1) Consider the graph $G=(V, E)$ where $V=\{a, b, c, d, e\}$ and $E=\{a b, a c, b c, b d, d e, e c\}$.
(a) Draw the graph defined by G.
(b) What is the size and order of G?
(c) It is standard notation in graph theory to let $\delta(G)$ be the minimum degree and $\Delta(G)$ be the maximum degree of any graph G. What is $\delta(G)$ and $\Delta(G)$ in this example?
(d) Draw the picture of \bar{G}.
(2) Give a formula for the number of edges in K_{n}.
(3) Let G be a graph of size 10. Assume it only has vertices of degree 1,2 and 4 . If we know it has 3 vertices of degree 2 , and 2 vertices of degree 4 , then how many vertices of degree 1 must G have?
(4) Prove that in any graph G there must be an even number of vertices with odd degree.
(5) Let $S \subset V$ be a subset of vertices in a graph G. Show that S is a clique in G if and only if S is an independent set in \bar{G}.
(6) Let $G=(V, E)$ be a graph. We say a graph $H=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G and write $H \subseteq G$ provided that $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$.

Assume that H is a subgraph of G. Is it possible for:
(a) $\Delta(G)<\Delta(H)$?
(b) $\delta(G)<\delta(H)$?

Be sure to justify your answer.
(7) Let $H \subseteq G$. We say H is an induced subgraph of G if for every $u, v \in V(H)$, then $u v$ is an edge of H if and only if $u v$ is an edge of G. Find graphs H and G such that $H \subseteq G$ but is not an induced subgraph of G.

