Math 378 - Fall 2024 Homework 3

Due October 15, 2024

A mathematician, like a painter or a poet, is a maker of patterns. If his patterns are more permanent than theirs, it is because they are made with ideas.

– G. H. Hardy

Turn in:

- (1) Let $\sigma = 6732415$.
 - (a) For each of the 6 patterns of length 3, either find an occurrence of the pattern in σ , or justify that σ avoids the pattern.
 - (b) Find all occurrences of 3412 in σ .
- (2) In class we showed that if σ = σ₁σ₂...σ_k is a pattern (in one-line notation) and we define σ' = σ_k...σ₂σ₁ to be the reverse pattern then Av_n(σ) = Av_n(σ') for all n. Now define σ̄ = (k + 1 σ₁)(k + 1 σ₂)...(k + 1 σ_k), the pattern obtained by "inverting the size" of each element of the pattern. (For example, if σ = 52143, then σ̄ = 14523.)
 (a) Prove that Av_n(σ) = Av_n(σ̄) for all n.
 - (b) Combining the result of (a), with the result from class to show that

 $\operatorname{Av}_n(132) = \operatorname{Av}_n(231) = \operatorname{Av}_n(213) = \operatorname{Av}_n(312).$

(Note: there is no way to use these facts to prove that $Av_n(123)$ is equal to the four classes above, that fact is somehow "deeper.")

- (c) Partition the 24 patterns of length 4 into sets whose counts can be proven to be equivalent by the methods of (b).
- (3) In the Homework 3 folder in your individual project write:
 - (a) A function which uses recursion, called BinomRec(n,k) which computes the binomial coefficient $\binom{n}{k}$, using only the following facts about binomial coefficients (In particular it shouldn't use any factorials or multiplications):
 - (i) $\binom{0}{0} = 1$

(ii)
$$\binom{n}{k} = 0$$
 if $k < 0$ or $k > n$.

- (iii) $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ (Pascal's identity)
- (b) A generator called BinomialRow(n) that yields the binomial coefficients in the *n*-th row of Pascal's triangle one at a time. (Use the function from part a.)
- (c) Measure how long (in seconds) it takes your code from part a to compute the "middle" binomial coefficients $\binom{2n}{n}$ for n = 1, 2, 3, 4... as far as you can go. Based on these times, make a prediction for how long it would take your code to compute $\binom{100}{50}$ and $\binom{2000}{1000}$. (Hint: you might want to checkout SageMath's timeit command.)