— John von Neumann

Turn in:

- (1) Let $\sigma = 7135426$ and $\tau = 4513762$ (In one-line-notation).
 - (a) Write both σ and τ in cycle notation.
 - (b) Compute σ^2 and τ^2 .
 - (c) Compute $\sigma \circ \tau$ and $\tau \circ \sigma$. (Remember we take the left-to-right convention, not right-to-left.)
 - (d) The **order** of a permutation σ is the least (positive) number n such that σ^n is the identity permutation. Find the order of both σ and τ .

Note: a **transposition** is a permutation that swaps two elements (a cycle of length 2).

(2) Fix an integer n. Our goal is to prove that the following proceedure (the Fisher–Yates algorithm) produces each permutation σ of n with equal likelihood.

The Fisher-Yates algorithm: For each integer i = 1, 2, ..., n, pick a random integer $a_i \in \{i, i+1, ..., n\}$. Then define

$$\sigma = (1, a_1) \circ (2, a_2) \circ (3, a_3) \cdots (n, a_n).$$

- (a) Count the number of possible choices for the sequences a_1, a_2, \ldots, a_n that satisfy the condition $a_i \in \{i, i+1, \ldots, n\}$.
- (b) Fix n = 5. Find values of a_1 , a_2 etc satisfying this condition so that $\sigma = 43152$.
- (c) Show that every permutation π of n can be produced by this process. To do this, fix a permutation π of n written (in one line notation) as $\pi = \pi_1 \pi_2 \cdots \pi_n$ and describe how to pick the values of a_1 , a_2 etc so that the permutation σ described above is equal to π .
- (d) Now prove that by combining the observations of (a) and (c) we can conclude that the Fisher-Yates algorithm is equally likely to produce any permutation.