MATH 374 Notes

Cedric Wang

April 292020

1 Continuation of April 27 Notes

$$
\begin{aligned}
& \mathrm{y}(\mathrm{x})=\mathrm{c}_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots \\
& \quad=\mathrm{c}_{0}+c_{1} x+0 x^{2}-c_{0} / 6 x^{3}-c_{1} / 12 x^{4}+0 x^{5}+c_{0} / 180 x^{6}+c_{1} / 504 x^{7}+0 x^{8}+\ldots \\
& \quad=\mathrm{c}_{o}\left[1-1 / 6 x^{3}+1 / 180 x^{6}+1 / 12960 x^{9}+\ldots\right] \\
& \quad+\mathrm{c}_{1}\left[x-1 / 27 x^{4}+1 / 504 x^{7}-1 / 45360 x^{1} 0+\ldots\right] \\
& \quad \text { Finding solutions } \\
& \mathrm{y}_{1}(x)=\sum_{k=0}^{\infty} 1 * 4 * 7 \ldots(3 k-2) /(3 k)!(-1)^{k} x^{3 k} \\
& \quad=\sum_{k=0}^{\infty} \sum_{i=1}^{k}(3 k-2) /(3 k)!(-1)^{k} x^{k} \\
& \mathrm{y}_{2}(x)=\sum_{k=0}^{\infty} 2 * 5 * 8 \ldots(k-1) /(3 k+1)!(-1)^{k} x^{3 k+1} \\
& \mathrm{y}_{2}(x)=\sum_{k=0}^{\infty} \sum_{i=1}^{k}(3 k-1) /(3 k+1)!(-1)^{k} x^{3 k+1}
\end{aligned}
$$

In many cases we won't write down the full series solution just solve for the first several terms of a series solution

These partial sums should be good approximates to the solution near the center point.

2 Example 1

Find the first 6 terms of a series solution to
$(x-1) y^{\prime \prime}-x y^{\prime}+y=0$
satisfying $y(0)=-2$ and $y^{\prime}(0)=6$
Centered at $\mathrm{x}_{o}=0$
Does this equation have singular points?
$\mathrm{y}^{\prime \prime}-\mathrm{x}(\mathrm{x}-1)^{-1} y^{\prime}+1(x-1)^{-1} y=0$
So we'll find a series solution around $\mathrm{x}_{o}=0$ whichconvergesontheinterval $(-1,1)$
$\mathrm{y}(\mathrm{x})=\sum_{n=0}^{\infty} x_{n} x^{n}$
$\mathrm{y}^{\prime}(\mathrm{x})=\sum_{n=1}^{\infty} n c_{n} x^{n-1}$
$\mathrm{y}^{\prime \prime}(\mathrm{x})=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}$
xy " -y " $-\mathrm{xy}{ }^{\prime}+\mathrm{y}=0$
$\mathrm{xy} "=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-1}$
$\mathrm{y}^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}$
$\mathrm{xy}^{\prime}=\sum_{n=1}^{\infty} n c_{n} x^{n}$
$\mathrm{y}=\sum_{n=0}^{\infty} c_{n} x^{n}$

Therefore $\mathrm{c}_{o}-2 c_{2}+\sum_{n=2}^{\infty}\left[(k+1) k c_{k+1}-(k+2)(k+1) c_{k+2}-k c_{k c k}\right] x^{k}$ $=\mathrm{c}_{o}-2 c_{2}+\sum_{n=2}^{\infty}\left[(k+1) k c_{k+1}-(k+2)(k+1) c_{k+2}-c_{k}(k-1)\right] x^{k}=0$ $\mathrm{c}_{o}-2 c_{2}=0=>c_{2}=c_{o} / 2$
$\mathrm{k}(\mathrm{k}+1) \mathrm{c}_{k+1}-(k+2)(k+1) c_{k+2}-(k-1) c_{k}=0$
$(\mathrm{k}+2)(\mathrm{k}+1) \mathrm{c}_{k+2}=k(k+1) c_{k+1}-(k-1) c_{k}$
$\mathrm{c}_{k+2}=k(k+1) c_{k+1}-(k-1) c_{k}$
$y(0)=-2=i c_{o}$
$y^{\prime}(0)=6=i c_{1}=6$
$\mathrm{c}_{2}=c_{0} / 2=-1$
$\mathrm{c}_{3}=c_{1+2}=-1 / 3$
$c_{4}=-1 / 12$
$c_{5}=-1 / 60$
$\mathrm{c}_{6}=-1 / 360$
$\mathrm{y}(\mathrm{x})=-2+6 \mathrm{x}-\mathrm{x}^{2}-x^{3} / 3-x^{4} / 12-x^{5} / 60-x^{6} / 360+\ldots$

3 Example 2

We can do this when the coefficients aren't just polynomials too.
$y "+\sin (x) y=0$
Find the first 3 terms of a solution around 0 to $y(0)=1, y^{\prime}(0)=2$
To solve this we need to use the Taylor Series for $\sin (\mathrm{x})$ around $\mathrm{x}_{o}=0$
$\sin (\mathrm{x})=\mathrm{x}-\mathrm{x}^{3} / 3!+x^{5} / 5!+\ldots$
$\mathrm{y}(\mathrm{x})=\mathrm{c}_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$
$\mathrm{y}^{\prime}(\mathrm{x})=\mathrm{c}_{1}+2 c_{2} x+3 c_{3} x^{2}+\ldots$
$\mathrm{y} "(\mathrm{x})=2 \mathrm{c}_{2}+6 c_{3} x+\ldots$
Therefore:
$\left(2 \mathrm{c}_{2}+6 c_{3} x\right)+\sin (x)\left(c_{0}+c_{1}+\ldots\right)=0$
$\left(2 \mathrm{c}_{2}+6 c_{3} x+\ldots\right)+\left(x-x^{3}+\ldots\right)\left(c_{0}+c_{1}+c_{2} x^{2}+\ldots\right)=0$
$\left(2 \mathrm{c}_{2}+6 c_{3} x+\ldots\right)+\left(c_{0} x+c_{1} x^{2}+c_{2} x^{3}+\ldots-x^{3} c_{0} / 3-c_{1} / 3!x^{4}+\ldots\right)$
$2 \mathrm{c}_{2}+\left(6 c_{3}+c_{0}\right) x+\left(12 c_{4}+c_{1}\right) x^{2}+\ldots=0$
Each coefficient is 0
Therefore:
$2 \mathrm{c}_{2}=0$
$6 \mathrm{c}_{3}+\mathrm{c}_{0}=0$
$12 \mathrm{c}^{4}+c_{1}=0$
$\mathrm{c}_{0}=1$
$\mathrm{c}_{1}=2$
$\mathrm{c}_{2}=0$
$c_{3}=-1 / 6$
$\mathrm{c}_{4}=-1 / 6$

