Differential Equations April 13th Notes

Avery Schweitzer

May 2020

1 Systems of Equations

Ex 1.1. 2 tanks: Each holds 24 liters.
Tank 1

- Starts with 2 lbs of salt
- inflow of 6 liters per minute of pure water
- inflow of 2 liters per minute from tank 2
- outflow of 8 liters per minute

Tank 2

- Starts with no salt
- inflow of 8 liters per minute from tank 1
- outflow of 8 liters per minute
$\frac{d x}{d t}=6$ liters per minute $* 0$ lbs of salt per liter +2 liters per minute $* y(t) / 24$ lbs of salt per liter -8 liters per minute $* x(t) / 24$ lbs of salt per liter $=$ $y(t) / 12-x(t) / 3$.
$\frac{d x}{d t}=y(t) / 12-x(t) / 3$.
Likewise, $\frac{d y}{d t}=x(t) / 3-y(t) / 3$.
We want to eliminate one variable.
We have $(D+1 / 3) x-y / 12=0$ and $(D+1 / 3) y-x / 3=0$.
$1 / 3(D+1 / 3) x-y / 36=0$
$(D+1 / 3)^{2} y-1 / 3(D+1 / 3) x=0$
$(D+1 / 3)^{2} y-y / 36=0$
$D^{2} y+\frac{2}{3} D y+y / 12=0$
$\left.\left(D^{2}+\frac{3}{3} D+\frac{1}{2}\right) y=0\right)$
Find Auxiliary Equation
$m^{2}+\frac{2}{3} m+\frac{1}{12}=0$
$(m+1 / 2)(m+1 / 6)=0$
$m=-1 / 2,-1 / 6$
$y(t)=c_{1} e^{-t / 2}+c_{2} e^{-t / 6}$

Now we want to find $x(t)$.
$\frac{d y}{d t}=x(t) / 3-y(t) / 3$.
$x(t)=3 \frac{d y}{d t}+y$
We plug in y to get $x=\frac{-1}{2} c_{1} e^{-t / 2}+\frac{1}{2} c_{2} e^{-t / 6}$
Solve for c_{1}, and c_{2} using $x(0)=2$ and $y(0)=0$ to get $c_{1}=-2$ and $c_{2}=2$. So

$$
x(t)=e^{-t / 2}+e^{-t / 6} \text { and } y(t)=-2 e^{-t / 2}+2 e^{-t / 6}
$$

Ex 1.2. $x^{\prime}-3 x+4 y=1$ so $(D-3) x+4 y=1$. $-4 x+y^{\prime}+7 y=10 t$ so $(D+7) y-4 x=10 t$.

Eliminate One Variable

$4(D-3) x+16 y=4$
$(D-3)(D+7) y-(D-3) 4 x=(D-3) 10 t=10-30 t$.
Add together to get:
$(D-3)(D+7) y+16 y=14-30 t$
$y^{\prime \prime}+4 y^{\prime}-5 y=-14-30 t$
Find Complimentary Solution
Aux: $m^{2}+4 m-5=0$
$(m-1)(m+5)=0$
$y_{c}=c_{1} e^{t}=c_{2} e^{-5 t}$
Find Particular Solution
$y_{p}=A t+B$
$y_{p}^{\prime}=A$ and $y_{p}^{\prime \prime}=0$ so $y_{p}^{\prime \prime}+4 y_{p}^{\prime}-5 y_{p}=-5 A t+4 A-5 B$.
So $-5 A t+4 A-5 B=14-30 t$. Then $A=6$ and $B=2$.
$y=c_{1} e^{t}+c_{2} e^{-5 t}+6 t+2$
Now we can find $x(t)$ by plugging y and y^{\prime} into $(D+7) y-4 x=10 t$ to get $x=2 c_{1} e^{t}+\frac{1}{2} c_{2} e^{-5 t}+8 t+5$.

2 Nonlinear Equations of Higher Order

Sum of homogeneous solutions is not necessarily a homogeneous solution.

Most of these can't be solved analytically. Can solve if either independent variable x or y-term is missing. $F\left(x, y^{\prime}, y^{\prime \prime}\right)=0$ or $F\left(y, y^{\prime}, y^{\prime \prime}\right)=0$. Use substitution $u=y^{\prime}$ to make a first order equation. $y^{\prime \prime}=\frac{d u}{d x}=\frac{d u}{d y} \frac{d y}{d x}=u^{\prime} y^{\prime}=u^{\prime} u$.

Ex 2.1. $y+y^{\prime \prime}=y\left(y^{\prime}\right)^{2}$
$y+u^{\prime} u=y u^{2}$
$u^{\prime}=\frac{y u^{2}-y}{u}=y(u-1 / u)$
$y=\frac{u^{\prime}}{u-1 / u}$
Take the integral of both sides to get $y^{2}=\ln \left(u^{2}-1\right)+c$
$k e^{y^{2}}=u^{2}-1$ where $k=\left(e^{c}\right)^{-1}$
$u=\sqrt{k e^{y^{2}}+1}$
$y^{\prime}=\sqrt{k e^{y^{2}}+1}$

We dont think this is solvable.

