MATH 374 Fall 2020 - Class Notes

3/09/2020

Scribe: Ellis Floyd

Summary: Today's Class covered the superposition principle for both homogeneous and non-homogeneous equations and the Wronskian in order to determine linear independence.

Notes:

General Form for an n-th order linear differential equation:

 $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y = g(x)$

Call this a homogeneous equation if g(x) = 0

Ex:

1. y'' + sin(x)y' + cos(x)y = 0 (homogeneous)

2. y'' + cos(x)y = sin(x) (non-homogeneous)

D - derivative operator

$$Dy = y' = \frac{dy}{dx}$$

$$(D^{2} + D + 1)y = D^{2}y + Dy + y = y'' + y' + y$$

Sometimes we write $L(y) = x^2 + 3$ where $L = D^2 + D$ means

$$(D^2 + D)(y) = x^2 + 3$$

or

$$y'' + y' = x^2 + 3$$

Theorem (Superposition Principle)

If $y_1, y_2, ..., y_k$ are solutions to an n-th order linear homogeneous equation then so is any linear combination of them.

 $C_1y_1 + C_2y_2 + \ldots + C_ky_k$ is also a solution to this differential equation

Ex: y'' - 9y = 0Check that $y_1 = e^{3x}$ is a solution, as is $y_2 = e^{-3x}$ $y_1 = e^{3x}$ $y_1 = 3e^{3x}$ $y_1 = 9e^{3x}$ $y_1'' - 9y = 9e^{3x} - 9e^{3x} = 0\checkmark$ $y_2 = e^{-3x}$ $y_2 = -3e^{-3x}$ $y_2 = 9e^{-3x}$ $y_2 = 9e^{-3x}$ $y_2 = 9e^{-3x}$

Our Superposition principle says that $C_1e^{3x} + C_2e^{-3x}$ is also a solution to this differential equation for any constants C_1 and C_2

A family of equations $f_1(x), f_2(x), ..., f_k(x)$ is linearly dependent on an interval I if there exist constants $C_1, C_2, ..., C_k$ not all zero such that $C_1f_1(x) + C_2f_2(x) + ... + C_kf_k(x)$ is zero for all x in I.

Ex:

 $f_1(x) = sin^2(x)$ $f_2(x) = cos^2(x)$ $f_3(x) = tan^2(x)$ $f_4(x) = sec^2(x)$

Are these linearly dependent on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

$$sin^{2}(x) + cos^{2}(x) = 1$$

 $tan^{2}(x) - sec^{2}(x) = -1$

take $C_1 = C_2 = C_3 = 1$ and $C_4 = -1$

$$sin^{2}(x) + cos^{2}(x) + tan^{2}(x) - sec^{2}(x) = (1) + (-1) = 0\checkmark$$

Any family of equations that is not linearly dependent is called linearly independent.

Theorem:

If we have an n-th order linear homogeneous differential equation the nit will have n linearly independent solutions $y_1, y_2, ..., y_n$ and any solution to this differential equation will be a linear combination of these solutions.

Suppose:

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y = g(x)$$

is an nth order linear differential non-homogeneous equation with a particular solution y_p . If $y_1, y_2, ..., y_n$ are solutions to the homogeneous equation

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y = 0$$

then

 $C_1y_1 + C_2y_2 + \ldots + C_ny_n + y_p$ is a solution to the original non-homogeneous equation.

Complementary Solution: $C_1y_1 + C_2y_2 + \ldots + C_ny_n$ Particular Solution: y_p

Def: The <u>Wronskian</u> of a family of equations $y_1, y_2, ..., y_n$ is the determinant of the matrix

y_1	y_2	 y_n
y_1'	y'_2	 y'_n
	,	
y_1^{n-1}	y_2^{n-1}	 y_n^{n-1}

The family $y_1, y_2, ..., y_n$ is linearly dependent on I if and only if the Wronskian is 0 on I.

Ex:
$$y'' - 9y = 0$$

 $y_1 = e^{3x}$ and $y_2 = e^{-3x}$ were both solutions. Are these solutions linearly independent?

Reminder Determinant of a 2x2 Matrix $\begin{vmatrix} A & B \\ C & D \end{vmatrix}$ =AD-BC

$$W(e^{3x}, e^{-3x}) = \begin{vmatrix} e^{3x} & e^{-3x} \\ 3e^{3x} & -3e^{-3x} \end{vmatrix}$$

$$W(e^{3x}, e^{-3x}) = e^{3x}(-3e^{-3x}) - e^{-3x}(3e^{3x})$$
$$= -3 - 3 = -6 \neq 0$$

These equations are linearly independent

What about y'' + 9y = 0?

$$y_1 = sin(3x) \text{ and } y_2 = cos(3x)$$

 $y'_1 = 3cos(3x)$
 $y''_1 = -9sin(3x)$
 $y'' + 9y = -9sin(3x) + 9sin(3x) = 0\checkmark$

Are sin(3x)andcos(3x) linearly independent?

$$W(sin(3x), cos(3x)) = \begin{vmatrix} sin(3x) & cos(3x) \\ 3cos(3x) & -3sin(3x) \end{vmatrix}$$

= $-3sin^2(3x) - 3cos^2(3x)$
= $-3(sin^2(3x) - cos^2(3x))$
= -3

So sin(3x) and cos(3x) are linearly independent. All solutions to y'' + 9y = 0 are of the from $y = C_1 sin(3x) + C_2 cos(3x)$.

Theorem (Superposition principle for non-homogeneous differential equations)

If y_{p_1} is a particular solution to

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y = g_i(x)$$

for some family $g_1(x)$,

then $y_{p_1} + y_{p_2} + \ldots + y_{p_k}$ is a particular solution to

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y = g_1(x) + g_2(x) + \dots + g_1(k)$$

Suppose you want to solve y'' + 3y' - 7y = 1 + x. Find a solution y_1 to y'' + 3y' - 7y = 1and a solution y_2 to y'' + 3y' - 7y = x.

Then $y_1 + y_2$ is a solution to the original differential equation.