MATH 374 Fall 2020 - Class Notes

3/09/2020
Scribe: Ellis Floyd
Summary: Today's Class covered the superposition principle for both homogeneous and non-homogeneous equations and the Wronskian in order to determine linear independence.

Notes:

General Form for an n-th order linear differential equation:

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\ldots+a_{1}(x) y=g(x)
$$

Call this a homogeneous equation if $\mathrm{g}(\mathrm{x})=0$
Ex:

1. $y^{\prime \prime}+\sin (x) y^{\prime}+\cos (x) y=0$ (homogeneous)
2. $y^{\prime \prime}+\cos (x) y=\sin (x)$ (non-homogeneous)
D - derivative operator
$D y=y^{\prime}=\frac{d y}{d x}$
$\left(D^{2}+D+1\right) y=D^{2} y+D y+y=y^{\prime \prime}+y^{\prime}+y$
Sometimes we write $L(y)=x^{2}+3$ where $L=D^{2}+D$ means
$\left(D^{2}+D\right)(y)=x^{2}+3$
or
$y^{\prime \prime}+y^{\prime}=x^{2}+3$

Theorem (Superposition Principle)
If $y_{1}, y_{2}, \ldots, y_{k}$ are solutions to an n -th order linear homogeneous equation then so is any linear combination of them.
$C_{1} y_{1}+C_{2} y_{2}+\ldots+C_{k} y_{k}$ is also a solution to this differential equation

Ex: $y^{\prime \prime}-9 y=0$
Check that $y_{1}=e^{3 x}$ is a solution, as is $y_{2}=e^{-3 x}$

$$
\begin{aligned}
& y_{1}=e^{3 x} \\
& y_{1}=3 e^{3 x} \\
& y_{1}=9 e^{3 x} \\
& y_{1}^{\prime \prime}-9 y=9 e^{3 x}-9 e^{3 x}=0 \checkmark \\
& y_{2}=e^{-3 x} \\
& y_{2}=-3 e^{-3 x} \\
& y_{2}=9 e^{-3 x} \\
& y_{2}^{\prime \prime}-9 y=9 e^{-3 x}-9 e^{-3 x}=0 \checkmark
\end{aligned}
$$

Our Superposition principle says that $C_{1} e^{3 x}+C_{2} e^{-3 x}$ is also a solution to this differential equation for any constants C_{1} and C_{2}

A family of equations $f_{1}(x), f_{2}(x), \ldots, f_{k}(x)$ is linearly dependent on an interval I if there exist constants $C_{1}, C_{2}, \ldots, C_{k}$ not all zero such that $C_{1} f_{1}(x)+C_{2} f_{2}(x)+\ldots+C_{k} f_{k}(x)$ is zero for all x in I .

Ex:

$$
\begin{aligned}
& f_{1}(x)=\sin ^{2}(x) \\
& f_{2}(x)=\cos ^{2}(x) \\
& f_{3}(x)=\tan ^{2}(x) \\
& f_{4}(x)=\sec ^{2}(x)
\end{aligned}
$$

Are these linearly dependent on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

$$
\begin{aligned}
& \sin ^{2}(x)+\cos ^{2}(x)=1 \\
& \tan ^{2}(x)-\sec ^{2}(x)=-1
\end{aligned}
$$

take $C_{1}=C_{2}=C_{3}=1$ and $C_{4}=-1$

$$
\sin ^{2}(x)+\cos ^{2}(x)+\tan ^{2}(x)-\sec ^{2}(x)=(1)+(-1)=0 \checkmark
$$

Any family of equations that is not linearly dependent is called linearly independent.

Theorem:
If we have an n-th order linear homogeneous differential equation the nit will have n linearly independent solutions $y_{1}, y_{2}, \ldots, y_{n}$ and any solution to this differential equation will be a linear combination of these solutions.

Suppose:
$a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\ldots+a_{1}(x) y=g(x)$
is an nth order linear differential non-homogeneous equation with a particular solution y_{p}. If $y_{1}, y_{2}, \ldots, y_{n}$ are solutions to the homogeneous equation
$a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\ldots+a_{1}(x) y=0$
then
$C_{1} y_{1}+C_{2} y_{2}+\ldots+C_{n} y_{n}+y_{p}$ is a solution to the original non-homogeneous equation.
Complementary Solution: $C_{1} y_{1}+C_{2} y_{2}+\ldots+C_{n} y_{n}$
Particular Solution: y_{p}

Def: The Wronskian of a family of equations $y_{1}, y_{2}, \ldots, y_{n}$ is the determinant of the matrix
$\left|\begin{array}{cccc}y_{1} & y_{2} & \ldots & y_{n} \\ y_{1}^{\prime} & y_{2}^{\prime} & \ldots & y_{n}^{\prime} \\ \ldots & \ldots & \ldots & \ldots \\ y_{1}^{n-1} & y_{2}^{n-1} & \ldots & y_{n}^{n-1}\end{array}\right|$

The family $y_{1}, y_{2}, \ldots, y_{n}$ is linearly dependent on I if and only if the Wronskian is 0 on I.
Ex: $y^{\prime \prime}-9 y=0$
$y_{1}=e^{3 x}$ and $y_{2}=e^{-3 x}$ were both solutions. Are these solutions linearly independent?
Reminder Determinant of a 2x2 Matrix $\left|\begin{array}{cc}A & B \\ C & D\end{array}\right|=A D-B C$
$W\left(e^{3 x}, e^{-3 x}\right)=\left|\begin{array}{cc}\mathrm{e}^{3 x} & \mathrm{e}^{-3 x} \\ 3 \mathrm{e}^{3 x} & -3 \mathrm{e}^{-3 x}\end{array}\right|$

$$
\begin{aligned}
W\left(e^{3 x}, e^{-3 x}\right) & =e^{3 x}\left(-3 e^{-3 x}\right)-e^{-3 x}\left(3 e^{3 x}\right) \\
& =-3-3=-6 \neq 0
\end{aligned}
$$

These equations are linearly independent

What about $y^{\prime \prime}+9 y=0$?
$y_{1}=\sin (3 x)$ and $y_{2}=\cos (3 x)$
$y_{1}^{\prime}=3 \cos (3 x)$
$y_{1}^{\prime \prime}=-9 \sin (3 x)$
$y^{\prime \prime}+9 y=-9 \sin (3 x)+9 \sin (3 x)=0 \checkmark$
Are $\sin (3 x) \operatorname{and} \cos (3 x)$ linearly independent?

$$
\begin{aligned}
W(\sin (3 x), \cos (3 x) & =\left|\begin{array}{cc}
\sin (3 x) & \cos (3 x) \\
3 \cos (3 x) & -3 \sin (3 x)
\end{array}\right| \\
& =-3 \sin ^{2}(3 x)-3 \cos ^{2}(3 x) \\
& =-3\left(\sin ^{2}(3 x)-\cos ^{2}(3 x)\right) \\
& =-3
\end{aligned}
$$

So $\sin (3 x)$ and $\cos (3 x)$ are linearly independent. All solutions to $y^{\prime \prime}+9 y=0$ are of the from $y=C_{1} \sin (3 x)+C_{2} \cos (3 x)$.

Theorem (Superposition principle for non-homogeneous differential equations)
If $y_{p_{1}}$ is a particular solution to
$a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\ldots+a_{1}(x) y=g_{i}(x)$
for some family $g_{1}(x)$,
then $y_{p_{1}}+y_{p_{2}}+\ldots+y_{p_{k}}$ is a particular solution to
$a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\ldots+a_{1}(x) y=g_{1}(x)+g_{2}(x)+\ldots+g_{1}(k)$
Suppose you want to solve $y^{\prime \prime}+3 y^{\prime}-7 y=1+x$. Find a solution y_{1} to $y^{\prime \prime}+3 y^{\prime}-7 y=1$ and a solution y_{2} to $y^{\prime \prime}+3 y^{\prime}-7 y=x$.

Then $y_{1}+y_{2}$ is a solution to the original differential equation.

