Exact DEs

An equation $M(x, y) d x+N(x, y) d y=0$ is exact if $<\mathrm{M}(\mathrm{x}, \mathrm{y}), \mathrm{N}(\mathrm{x}, \mathrm{y})>$ is conservative.

If there exists a function $\mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{Z}$ such that $M(x, y)=\frac{d f}{d x}$ and $N(x, y)=\frac{d f}{d y}$ Test: this form is exact if and only if: $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$

A differential equation is exact if and only if its solutions are the levelcurves of the surface $Z=F(x, y)$

Note: $M(x, y) d x+N(x, y) d y=0$
Solve for $\frac{d y}{d x}$
$N(x, y) d y=-M(x, y) d x$
$\frac{d y}{d x}=-\frac{M(x, y)}{N(x, y)}$
We can solve by integrating both sides
$y^{\prime}=\frac{3 x^{2} y^{2}-y^{3}}{3 x y^{2}-2 x^{3} y}=\frac{d y}{d x}$
$\left(3 x^{2} y^{2}-y^{3}\right) d x=\left(3 x y^{2}-2 x^{3} y\right) d y$
$\left(3 x^{2} y^{2}-y^{3}\right) d x-\left(3 x y^{2}-2 x^{3} y\right) d y=0$
Test for exactness:
$\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(3 x^{2} y^{2}-y^{3}\right)$
$\frac{\partial M}{\partial y}=6 x^{2} y-3 y^{2}$
$\frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left(-3 x y^{2}+2 x^{3} y\right)$
$\frac{\partial N}{\partial x}=-3 y^{2}+6 x^{2} y$
$-3 y^{2}+6 x^{2} y=6 x^{2} y-3 y^{2}$
Use the method of exact equations to solve Integrate:
$\int M(x, y) d x=\int\left(3 x^{2} y^{2}-y^{3}\right) d x$
$\int M(x, y) d x=x^{3} y^{2}-x y^{3}+C$
$\frac{\partial}{\partial y}\left(x^{3} y^{2}-x y^{3}+C(y)\right)=2 x^{3} y-x y^{2}+C^{\prime}(y)$
Set equal to $N(x, y)$
$2 x^{3} y-x y^{2}+C^{\prime}(y)=2 x^{3} y-x y^{2}$
$C^{\prime}(y)=0$
$C^{\prime}(y)=c$
$F(x, y)=x^{3} y^{2}-x y^{3}+C$
$C=x^{3} y^{2}-x y^{3}$

Substitution

Various tricks for things we can substitute to get an equation into a form we can solve.
Homogeneous equations:
A function $\mathrm{F}(\mathrm{x}, \mathrm{y})$ is called homogeneous if $F(t x, t y)=t^{\alpha} F(x, y)$
A DE is homogeneous if $y^{\prime}=F(x, y)$ where $\mathrm{F}(\mathrm{x}, \mathrm{y})$ is homogeneous or for an exact equation if both $\mathrm{M}(\mathrm{x}, \mathrm{y})$ and $\mathrm{N}(\mathrm{x}, \mathrm{y})$ are homogeneous

Ex.
$F(x, y)=x^{2} y^{3}+y^{4} x$
$F(t x, t y)=(t x)^{2}(t y)^{3}+(t y)^{4}(t x)$
$F(t x, t y)=t^{2} x^{2} t^{3} y^{3}+t^{4} y^{4} t x$
$F(t x, t y)=t^{5} x^{2} y^{3}+t^{5} y^{4} x$
$F(t x, t y)=t^{5}\left(x^{2} y^{3}+y^{4} x\right)$
$F(t x, t y)=t^{5}(F(x, y))$
Ex.
$F(x, y)=x+e^{y}$ this is not homogeneous because,
$F(t x, t y)=t x+e^{t y}$ which does not allow us to factor out a t

If we have a homogeneous DE we make the substitution:
$u=\frac{y}{x}, y=u x$
$y^{\prime}=\frac{d}{d x}(u x)$
$y^{\prime}=u^{\prime}(x)+u(1)$
$y^{\prime}=u^{\prime}(x)+u$

