Math 374 Notes

Mary Kumcheva

February 12, 2020

1 Review of Linear Differential Equations

1.1 Formulas to Know

Standard Form:

$$
y^{\prime}+P(x) y=f(x)
$$

Integrating Factor:

$$
\mu(x)=e^{\int P(x) d x}
$$

1.2 Find the solution to $x \frac{d y}{d x}-4 y=x^{6} e^{x}$

Step 1: Convert to standard form by dividing across x

$$
\frac{d y}{d x}-\left(\frac{4}{x}\right) y=x^{5} e^{x}
$$

Step 2: Find integrating factor

$$
\begin{gathered}
\mu(x)=e^{\int-\frac{4}{x} d x} \\
\mu(x)=e^{-4 \ln |x|}=\left(e^{\ln |x|}\right)^{-4}=|x|^{-4} \\
\mu(x)=x^{-4}
\end{gathered}
$$

Step 3: Multiply DE by integrating factor $\mu(x)=x^{-4}$

$$
\frac{d y}{d x}\left(\frac{1}{x^{4}}\right)-\left(\frac{4}{x^{5}}\right) y=x e^{x}
$$

Step 4: "Undo" product rule and integrate both sides of the equation with respect to x

$$
\begin{aligned}
{\left[\left(\frac{1}{x^{4}}\right) y\right]^{\prime} } & =x e^{x} \\
\int\left[\left(\frac{1}{x^{4}}\right) y\right]^{\prime} d x & =\int x e^{x} d x
\end{aligned}
$$

Use integration by parts to integrate $\int x e^{x} d x$

$$
\begin{gathered}
u=x, d u=d x, d v=e^{x} d x, v=e^{x} \\
\int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C
\end{gathered}
$$

The integrated equation becomes

$$
\begin{gathered}
x^{-4} y=x e^{x}-e^{x}+C \\
y=x^{5} e^{x}-x^{4} e^{e}+C x^{4}
\end{gathered}
$$

1.3 Find the solution to $\frac{d y}{d x}-y \tan (x)=\sin (x)$ given the initial condition $y(0)=1$

Step 1: Find integrating factor

$$
\begin{gathered}
\mu(x)=e^{-\int \tan (x) d x} \\
\mu(x)=e^{-(-\ln |\cos (x)|)}=|\cos (x)| \\
\mu(x)=\cos (x)
\end{gathered}
$$

Step 2: Multiply DE by integrating factor $\mu(x)=\cos (x)$ and simplify

$$
\begin{gathered}
\cos (x) \frac{d y}{d x}-y \tan (x) \cos (x)=\sin (x) \cos (x) \\
\cos (x) \frac{d y}{d x}-y \sin (x)=\sin (x) \cos (x)
\end{gathered}
$$

Step 3: "Undo" product rule and integrate both sides of the equation with respect to x

$$
\begin{aligned}
{[\cos (x) y]^{\prime} } & =\sin (x) \cos (x) \\
\int[\cos (x) y]^{\prime} d x & =\int \sin (x) \cos (x) d x
\end{aligned}
$$

Use u-substitution to integrate $\int \sin (x) \cos (x) d x$

$$
\begin{gathered}
u=\sin (x), d u=\cos (x) d x \\
\int \sin (x) \cos (x) d x=\int u d u=\frac{1}{2} u^{2}+C=\frac{1}{2} \sin ^{2}(x)+C
\end{gathered}
$$

The integrated equation becomes

$$
\cos (x) y=\frac{1}{2} \sin ^{2}(x)+C
$$

$$
\begin{gathered}
y=\frac{\sin ^{2}(x)}{2 \cos (x)}+\frac{C}{\cos (x)} \\
y=\frac{1}{2} \sin (x) \tan (x)+C \sec (x)
\end{gathered}
$$

Step 4: Use initial condition $y(0)=1$ to solve for C

$$
\begin{gathered}
1=\frac{1}{2} \sin (0) \tan (0)+C \sec (0) \\
1=(0)+(1) C \rightarrow C=1 \\
y=\frac{1}{2} \sin (x) \tan (x)+\sec (x)
\end{gathered}
$$

2 Introduction of Exact Differential Equations

2.1 Background Information

For a surface $z=F(x, y)$, the level curves of the surface are solutions to $C=$ $F(x, y)$ for some C.
The Total Differential of $F(x, y)$ is

$$
d z=\frac{\delta F}{\delta x} d x+\frac{\delta F}{\delta y} d y
$$

A differential $M(x, y) d x+N(x, y) d y$ is exact if there exists a function $F(x, y)$ such that

$$
M(x, y)=\frac{\delta F}{\delta x} \quad \text { and } \quad N(x, y)=\frac{\delta F}{\delta y}
$$

A vector field $\langle M(x, y), N(x, y)\rangle$ is conservative if the differential is exact and if

$$
\frac{\delta M}{\delta y}=\frac{\delta N}{\delta x}
$$

If a differential is exact, work backward to solve for $F(x, y)$
2.2 Verify that $(2 x+y) d x+(2 y+x) d y$ is exact and find $F(x, y)$
Step 1: Find $\frac{\delta M}{\delta y}$ and $\frac{\delta N}{\delta x}$ to check if the differential is exact

$$
\begin{gathered}
M(x, y)=2 x+y, \quad \frac{\delta M}{\delta y}=1 \\
N(x, y)=2 y+x, \quad \frac{\delta N}{\delta x}=1 \\
\frac{\delta M}{\delta y}=\frac{\delta N}{\delta x}=1
\end{gathered}
$$

so the differential is exact.
Step 2: Integrate $N(x, y)$ to get an expression for $F(x, y)$ that has the constant in terms of x

$$
\begin{gathered}
\int N(x, y) d y=\int(2 y+x) d y \\
F(x, y)=y^{2}+x y+C(x)
\end{gathered}
$$

Step 3: Differentiate $F(x, y)$ with respect to x. Set the resulting expression equal to $M(x, y)$ to solve for $C^{\prime}(x)$

$$
\begin{gathered}
M(x, y)=\frac{\delta F}{\delta x}=0+y+C^{\prime}(x) \\
2 x+y=y+C^{\prime}(x) \\
C^{\prime}(x)=2 x
\end{gathered}
$$

Step 4: Integrate $C^{\prime}(x)$ with respect to x to find $C(x)$

$$
\begin{gathered}
\int C^{\prime}(x) d x=\int 2 x d x \\
C(x)=x^{2}+C
\end{gathered}
$$

Step 5: Substitute $C(x)$ into the expression for $F(x, y)$ that has the constant in terms of x

$$
\begin{gathered}
F(x, y)=y^{2}+x y+C(x) \\
F(x, y)=y^{2}+x y+x^{2}+C
\end{gathered}
$$

