MATH 374 Spring 2020 - Class Notes

1/27/2020
Scribe: Matthew Oberteuffer
Summary: In this class, we discussed the definition of a differential equation, different notations for derivatives, how to categorize differential equations, and questions of importance regarding solutions to a differential equation.

Differential Equation Definition:

- A differential equation is an equation involving a function y along with its higher derivatives.

Derivative Notations:

- Liebniz notation: $\frac{d y}{d x}$
- Prime notation: y^{\prime}
- Euler's notation: $D(y)$, emphasizes derivation as an operation.
- $f(x)=y, f_{x}$. take the derivative f with respect to x. Used more when several independent variables exist.
- Sometimes we will also write differential equations in differential form. $m(x, y) \frac{d y}{d x}=$ $n(x, y) \Rightarrow m(x, y) d y=n(x, y) d x$

Categorizing differential equations:

- Differential equations can be categorized according to three criteria:

1. Type (Ordinary differential equations (O.D.E.), learned in this course, and partial differential equations (P.D.E).
2. Order
3. Linearity

Ordinary Differential Equations

- O.D.E.s only involve derivatives with respect to one independent variable.

Examples:

$\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+x y=0$
$\frac{d y}{d t}+t^{2}=y$

Partial Differential Equations

- P.D.E.s have derivatives with respect to multiple independent variables.
- These types are much harder in general.

Examples:

$\frac{d u}{d x}-\frac{d u}{d y}=0$
Schrödinger's Equation: $\frac{i h}{2 \pi} \frac{d}{d t} W=-\frac{h}{8 \pi m} \frac{d^{2}}{d x^{2}} W+V(x, t) W$

Order

- The order of a differential equation is the highest derivative appearing in the equation. For example, $\frac{d^{3} y}{d x^{3}}+x^{2} \frac{d y}{d x}+3=\operatorname{Sin}(y)$ is a third order differential equation because the third derivative is the highest derivative.
- If we have an $n^{\text {th }}$ order differential equation, we can always write it in general form: $F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0$, or normal form: $y^{(n)}=F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\right)$

Example: $x^{3} y^{\prime \prime}+3 x y^{\prime}+\operatorname{Cos}(x)=y$
General form: $x^{3} y^{\prime \prime}+3 x y^{\prime}+\operatorname{Cos}(x)-y=0$
Normal Form: $y^{\prime \prime}=\frac{y-3 x y^{\prime}-\operatorname{Cos}(x)}{x^{3}}$

Linearity

- A differential equation is linear if in general form we can write it as $F\left(x, y^{\prime}, y^{\prime \prime}, \ldots, y^{n}\right)=$ $a_{1}(x)+a_{2}(x) y+a_{3}(x) y^{\prime}+a_{4}(x) y^{\prime \prime}+\ldots+a_{n-1}(x) y^{x}$.
- When the coefficient of each y or $y^{(1)}$ is a function only of x, the differential equation is linear.

Examples:

$y^{\prime \prime}+3 x^{3} y+2=0\left(2^{\text {nd }}\right.$ order, linear $)$
$y^{\prime \prime}+y^{\prime} y+3 x=0\left(2^{\text {nd }}\right.$ order, non-linear $)$
$y^{\prime \prime \prime}+y=x\left(3^{\text {rd }}\right.$ order, linear $)$
$\frac{d^{2} y}{d x^{2}}+y^{3}=x\left(2^{\text {nd }}\right.$ order, non-linear $)$
$t^{3} \frac{d^{2} y}{d t^{2}}+y^{7}=t^{8}$ (2 $2^{\text {nd }}$ order, non-linear $)$
$(1-y) y^{\prime}+2 y=e^{x}\left(1^{\text {st }}\right.$ order, non-linear $)$
$y^{\prime \prime \prime}-\operatorname{Cos}(x)=y\left(3^{\text {rd }}\right.$ order, linear $)$
$\frac{d^{2} y}{d x^{2}}-\operatorname{Sin}(y)=x y\left(2^{\text {nd }}\right.$ order, non-linear $)$
$\frac{d^{2} y}{d x^{2}}+y^{3}-x=0\left(2^{\text {nd }}\right.$ order, non-linear $)$

Important Questions

- When does a DE:

1. Have a solution?
2. Have a unique solution?
3. And where are these solutions?

- Say $\phi(x)$ is a solution on an interval I of the differential equation $F\left(x, y^{\prime}, y^{\prime \prime}, \ldots, y^{n}\right)=0$ if we can substitute $y=\phi(x)$ and the equation holds for every x in I.

Example:

Consider $y^{\prime \prime}+\frac{2}{x^{2}}=0$
Check if $\phi(x)=\ln \left(x^{2}\right)$ is a solution (If so, where?)
$\phi^{\prime}(x)=\frac{1}{x^{4}} 2 x=\frac{2}{x}$
$\phi^{\prime \prime}(x)=-\frac{2}{x^{2}}$
Checks out, $-\frac{2}{x^{2}}+\frac{2}{x^{2}}=0$
So $\ln \left(x^{2}\right)$ is a solution on $(0, \infty)$ or $(-\infty, 0) . \underline{\operatorname{Not}(-\infty, \infty)}$

