1. Solve the system of differential equations

$$
\begin{aligned}
& \frac{d y}{d t}=3 x-2 y \\
& \frac{d x}{d t}=x+y .
\end{aligned}
$$

2. Solve the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=y+t \\
& \frac{d y}{d t}=z+t \\
& \frac{d z}{d t}=x-t
\end{aligned}
$$

3. Suppose you have two 30 gallon tanks of water with salt dissolved in each so that at time 0 , Tank 1 contains 3 lbs of salt, and Tank 2 contains 2 lbs of salt. Every minute 10 gallons of water flows into tank 1, with a concentration of 0.5 lbs of salt/gallon, 12 gallons of water flow from tank 1 to tank 2,2 gallons flow from tank 2 to tank 1 and 10 gallons of water flow out of tank 2 (and leave the system). Find equations for the amount of salt in each tank over time, and draw a graph of the solutions.
4. Use the substitution $u=y^{\prime}$ to solve the differential equation $y^{2} y^{\prime \prime}=y^{\prime}$.
5. A mass weighing 6 lbs is attached to a spring, which stretches it (downward) by 3 ft . Suppose that this mass is then pulled down 4 additional feet and released with an upward velocity of $1 \mathrm{ft} / \mathrm{sec}$.
(a) Assuming no drag, find an equation for the motion of this spring.
(b) Now assume there is a contribution from friction resulting in a damping force numerically 4 times the instantaneous velocity. Find the equation of motion in this case.
