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1 Introduction

2 Notes 27 September 2017

(Review definition of partitions from last class)

2.1 Ferrers Board

Ferrers Board - a useful way to visualize a partition λ = (λ1, λ2, ..., λk).
The Ferrers board of λ has λ1 boxes in the first row, and λ2 boxes immedi-

ately below (in the second row), and so on and so forth.
Ex.: A partition of 9 would be λ = (5,2,1,1)

Visualize it as how many ways you can arrange/place the blocks around., so
that the sum of the blocks is the original number.

2.2 Conjugates and Self-Conjugates

Definition: The conjugate λc of a partition λ is the partition that comes from
flipping the corresponding Ferrers Board across the main diagonal (columns turn
into rows).
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2.2.1 Theorem:

The number of partitions of n into exactly k parts
(
pk(n)

)
is equal to the

number of partitions of n whose largest part is equal to k.
Reminder: bijection is one to one and onto. (prove by finding inverse)

Proof:

Take a partition of n with k parts, and take its conjugate. The conjugate has
largest part k.

The conjugate operation is a bijection, since conjugating twice gives the
original partition.

So every partition with exactly k parts corresponds to a partition whose
largest part has size k.

Definition: A partition is called self-conjugate if it is equal to its own con-
jugate (symmetric across its main diagonal).

2.2.2 Theorem:

The number of self-conjugate partitions of n is equal to the number of parti-
tions of n into distinct odd parts.

(We can only write down odd numbers, and can’t use any twice)
Try this for n=5:
Odd distinct parts: 5
Try for n=7:
Odd distinct parts: 7
Try for n=8:
Odd distinct parts: 5+3, 7+1
Self-conjugate ways to do it: (4, 2, 1, 1), (3, 3, 2)

Proof:

Write down a bijection from a self-conjugate partition λ = (λ1, λ2, ..., λk) to
a partition with distinct odd parts.

Remove "hooks" (entire first row and first column from the self-conjugate
partition) one at a time, turning each one into a row of the new partition. (Take
our entire row and column of partition, and peel it off.)



What’s left over will still be a self-conjugate partition, so we can repeat
this process over and over again, until all the elements in the Ferrers board are
removed.

The resulting partition will be ((2λ1 − 1), (2λ2 − 3), (2λ3 − 5).

Note: (The top square was both a row and a column, so we counted twice.)

Lose the (2,1) entry and (3,1) entry because they were from the first hook,
and lose "corner box" from double-counting.

All these numbers are ODD. We want to argue that they are all distinct.
Because each successive λi is bigger than the last, we subtract larger numbers
each time.

The entries are distinct because the λi are non-increasing.

We need to now show that it is a bijection. Note that if we have a partition
into distinct odd parts.

Say we have, σ = (σ1, σ2, ..., σk). Since the σi are odd, we can write σi =
2si − (2i− 1) for odd j.

Take the ith element of σ, and subtract the ith off number. Divide by 2 to
get si.

This gives us a sequence of numbers si, which can be used to form the rows
of a self-conjugate partition, which will map to σ under our bijection.

So, our bijection is onto. If two self-conjugate partitions map to the same
partition into odd distinct parts, then all their "hooks" had the same size.

Every single one of the "hooks" that showed up in our self-conjugate parti-
tions was equal.

But, the hooks uniquely describe a self-conjugate partition (same number of
elements in rows as columns).

2.3 More Partitions!!

2.3.1 Theorem:

Let q(n) = the number of partitions of n into parts of size at least 2.

q(n) = p(n)− p(n− 1)



Proof:

Note that any partition of n that contains a part of size 1 corresponds to a
unique partition of (n− 1) obtained by removing the (last) piece of size 1.

Thus, the total number of partitions of n that contain at least one 1 is
counted by p(n− 1). So, if we take p(n)− p(n− 1), this counts all partitions of
n removing the ones which contain at least one 1, leaving only those with parts
all at least 2.

In effect, we took the entire set, and subtracted off the comple-
ment.

3 Not-So Vicious Cycles in Permutations!

(what follows is not covered on the midterm on 10/04)

3.1 Permutations and Counting

How many ways are there to write the numbers 1 through n around a circle? The
only thing that matters is what numbers are next to a given number.

(seats are not distinguished; rotate the table, nothing changes)

3.1.1 Theoremm:

This is a cycle of the numbers 1 through n. The number of cycles of [n] is
(n− 1)!.

Proof:

There are n! ways to write the numbers into the n positions around a fixed
circle. (say we can tell whose seats are whose; there are n ways to rotate the
circle)

Now there are n different ways to rotate the circle, and get the same cycle.
So, every cycle was counted n different times. Total of cycles is n!

n = (n−1)!.
Permutation is a rule that maps [n] 7→ [n]: one-to-one and onto.
We can apply the permutation multiple times. Permutation π: π2 means

take π2(i) = π(π(i)). In general, πk is the permutations we get if we apply π to
itself k times.


