MATH315-Notes 09/25/17

Isabelle Pardew

September 2017

1 Stirling Numbers of the Second Kind

$S(n, k)=$ the number of ways to partition $[n]$ into k nonempty subsets
From last class, we found that $\mathbf{S}(\mathbf{n}, \mathbf{k})=\mathbf{S}(\mathbf{n}-1, k-1)+\mathbf{k}(\mathbf{n}-1, k)$.
If $k>n$, you have more boxes than you have things, so this is not possible. Then, $S(n, k)=0$.

Also, $S(n, 0)=0$ (putting a positive n objects into 0 boxes).

1.1 Compute Small Values of $\mathrm{S}(\mathrm{n}, \mathrm{k})$

$\frac{k}{n}$	1	2	3	4	5
1	1				
2	1	1			
3	1	3	1		
4	1	7	6	1	
5	1	15	25	10	1

Notes: $S(2,1)=S(1,0)+1 * S(1,1)$
$S(3,2)=S(2,1)+2 * S(2,2)$

1.2 Definition of the n-th Bell Number:

For a fixed $n, \mathbf{B}(\mathbf{n})=\sum_{k=1}^{n} S(n, k)$ is the total number of ways to partition $[n]$ into any number of parts. This is called the n-th Bell number.

The number of ways to separate 1 object is one, thus $B(1)=1$.

$\mathbf{B}(\mathbf{n})$	Value of $\mathbf{B}(\mathbf{n})$
$B(2)$	$1+1=2$
$B(3)$	$1+3+1=5$
$B(4)$	$1+7+6+1=15$
$B(5)$	$1+15+25+10+1=52$
\vdots	\vdots
$B(n)$	$\sum_{k=1}^{n} S(n, k)$

1.3 Surjective Functions

Theorem:

The number of surjective (onto) functions from $[n] \rightarrow[k]$ is $k!* S(n, k)$,

Proof:

Any surjective function $\mathrm{f}:[n] \rightarrow[k]$ gives a partition of n into exactly k boxes, by assigning i to be placed in box $f(i)$.

None of the k boxes is empty, since f is surjective.
Now, we have to assign labels to previously unlabeled boxes (from 1 to k), and the number of ways to do so is $k!$.

Since the k boxes can be assigned labels from 1 to k in k ! different ways, any set partition of $[n]$ into exactly k nonempty boxes corresponds to k ! different surjective functions.

Note that if f is a bijection. then $n=k$ and $S(n, k)=1$.
So, our formula gives $k!* S(n, k)=k$! which is the number of permutations.

Recall the number of ways to place n distinct objects into k distinct boxes (possibly empty) was k^{n}.

How could we rewrite the above in terms of functions? This counts the number of functions f from $[n] \rightarrow[k]$.

Theorem:

$$
k^{n}=\sum_{i=1}^{n} S(n, i) \frac{k!}{(k-n)!}
$$

Proof:

How would we prove this?

The left-hand side is counting the number of ways to put n distinct objects into k distinct functions. ($f:[n] \rightarrow[k]$)

Not quite a Bell number, but close. If $i=1$, then we have one box.

The right-hand side counts functions $f:[n] \rightarrow[k]$ based on how many elements are in the image, or based on how many boxes have something in them.

Fix i, where $1 \leq i \leq n$. We need to use the Sterling Numbers, in some way.
We want to count surjective functions from $[n]$ to a subset of $[k]$ of size i. There are $\binom{\mathbf{k}}{\mathbf{i}}=\frac{\mathbf{k}!}{\mathbf{i}!(k-1)!}$ subsets of \mathbf{k} of size i. Additionally, there are $\mathbf{S}(\mathbf{n}, \mathbf{i}) * \mathbf{i}$! surjective functions from [\mathbf{n}] to a set of size \mathbf{i}.

So, we get.

$$
S(n, i) \frac{k!}{(k-1)!}
$$

..possible functions onto a set of size i.
Now, sum over i.

If both things are identical, . . .

If both the objects and the boxes are identical, we get integer partitions.
The only important thing is the number of objects that are in a box together.
Since the order of the boxes doesn't matter, we can just record the number of objects in each box, writing the numbers in decreasing order.

Example: find all integer partitions of 4. (4 things all together), (2,2), (3,1), (2,1,1), (1,1,1,1)

A partition of n is any sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$, where $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq$ $\ldots \geq \lambda_{k}$, and $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k}=n$.

If k is fixed, we call this a partition of size k.
Notation:
$p(n)=$ the number of integer partitions of n
$p_{k}(n)=$ the number of integer partitions of n into exactly k parts

No one knows a formula to compute $p(n)$ for any value of n, but we do have the ability to sum $p_{k}(n)$.

$$
p(n)=\sum_{k=1}^{n} p_{k}(n)
$$

2 Theorem (Hardy, Ramanujan)

(see The Man Who Knew Infinity!)

2.1 Asymptotic Expression of p(n)

$$
P(n) \sim \frac{1}{4 \sqrt{3}} e^{\pi \sqrt{\frac{2 \pi}{3}}}, n \rightarrow \infty
$$

