Suppose that we have two generating functions $\mathrm{A}(\mathrm{x})$ and $\mathrm{B}(\mathrm{x})$, where:

$$
\begin{aligned}
& A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
$$

Suppose that we define a function $C(x)$, such that $C(x)=A(x)+B(x)$, then:

$$
\begin{gathered}
C(x)=\sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=0}^{\infty} b_{n} x^{n} \\
C(x)=\sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n}
\end{gathered}
$$

What happens when we we to multiply $\mathrm{A}(\mathrm{x})$ and $\mathrm{B}(\mathrm{x})$?
Let us define: $\mathrm{C}(\mathrm{x})=\mathrm{A}(\mathrm{x})^{*} \mathrm{~B}(\mathrm{x})$ where $C_{n}=\sum_{n=0}^{\infty} c_{n} x^{n}$ Clearly, we can tell that $c_{n} \neq a_{n} b_{n}$

Let us try and determine an expression for c_{n} :

$$
\begin{gathered}
C(x)=\left(a_{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots\right)\left(b_{0}+b_{1} x^{1}+b_{2} x^{2}+\ldots\right) \\
C(x)=\left(a_{0} b_{0}\right) x^{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x^{1}+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\ldots
\end{gathered}
$$

From this, we can see that the general expression for c_{n} is:

$$
c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i}
$$

So, for $\mathrm{C}(\mathrm{x})=\mathrm{A}(\mathrm{x})^{*} \mathrm{~B}(\mathrm{x})$, we get that:

$$
C(x)=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} a_{i} b_{n-i}\right) x^{n}
$$

Example: We know that: $\frac{1}{1-x}=\sum_{n=0}^{\infty} 1 x^{n}$ Suppose that $A(x)=\frac{1}{1-x}$, and we want to compute $A(x) \times A(x)$.

$$
A(x) * A(x)=\left(\frac{1}{1-x}\right)\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}}
$$

Now, find the power serires for $A(x)^{2}$:

$$
\begin{gathered}
A(x)^{2}=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} a_{i} a_{n-i}\right) x^{n} \\
A(x)^{2}=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n}(1)\right) x^{n} \\
A(x)^{2}=\sum_{n=0}^{\infty}(n+1) x^{n}
\end{gathered}
$$

Example: What is the generating function for $\sum_{n=0}^{\infty} n x^{n} ?$

$$
\begin{gathered}
\frac{1}{(1-x)^{2}}=\sum_{n=0}^{\infty}(n+1) x^{n} \\
\frac{x}{(1-x)^{2}}=\sum_{n=0}^{\infty}(n+1) x^{n+1} \\
\frac{x}{(1-x)^{2}}=\sum_{n=1}^{\infty}(n) x^{n} \\
\frac{x}{(1-x)^{2}}=\sum_{n=1}^{\infty}(n) x^{n}+(0)\left(x^{0}\right)-(0)\left(x^{0}\right) \\
\frac{x}{(1-x)^{2}}=\sum_{n=0}^{\infty}(n) x^{n}
\end{gathered}
$$

Thus, the generating function for $\sum_{n=0}^{\infty} n x^{n}$ is:

$$
\frac{x}{(1-x)^{2}}
$$

Example: Suppose that we want to find a generating function for: $\sum_{n=0}^{\infty}(n+1) x^{n}$.
We know that:

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=======>\text { (1) }
$$

Now, we will take the derivative of both sides of(1):

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{d}{d x}(1-x)^{-1}=-1(1-x)^{-2}(-1)=\frac{1}{(1-x)^{2}} \\
\frac{d}{d x}\left(\sum_{n=0}^{\infty} x^{n}\right)=\frac{d}{d x}\left(x^{0}\right)+\frac{d}{d x}\left(\sum_{n=1}^{\infty} x^{n}\right)
\end{gathered}
$$

$$
\begin{aligned}
& =>0+\sum_{n=1}^{\infty} n x^{n-1} \\
& =>\sum_{n=0}^{\infty}(n+1) x^{n}
\end{aligned}
$$

Thus, our generating function for $\sum_{n=0}^{\infty}(n+1) x^{n}$ is $\frac{1}{(1-x)^{2}}$
Back to the Binomial Theorem:

$$
(x+1)^{m}=\sum_{n=0}^{m}\binom{m}{n} x^{n}
$$

Think of this as a generating function for the binomial coefficients: $a_{n}=\binom{m}{n}$, where this is 0 whenever n is greater than m .

The Generalized Binomial Theorem (for any real number α):

$$
(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}
$$

Define α as follows:

$$
\binom{\alpha}{n}=\frac{(\alpha)(\alpha-1)(\alpha-2) \ldots(\alpha-n+1)}{n!}
$$

Note: This definition gives the same expression as usual if α is an integer.
Example: $(\alpha=-2)$:

$$
\begin{gathered}
\frac{1}{(1-x)^{2}}=(1-x)^{-2} \\
\frac{1}{(1-x)^{2}}=\sum_{n=0}^{\infty}\binom{-2}{n}(-x)^{n} \\
\frac{1}{(1-x)^{2}}=\sum_{n=0}^{\infty} \frac{(-2)(-3)(-4) \ldots(-2-n+1)}{n!}(-x)^{n} \\
\frac{1}{(1-x)^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(2)(3)(4) \ldots(n+1)}{n!}(-1)^{n}\left(x^{n}\right)
\end{gathered}
$$

We know that $(-1)^{n} *(-1)^{n}=(-1)^{2 n}=1$ and there is a n ! in the numerator and denominator. So we are left with:

$$
\frac{1}{(1-x)^{2}}=\sum_{n=0}^{\infty}(n+1) x^{n}
$$

Example: Find a closed form for $a_{n}=6 a_{n-1}-9 a_{n-2}$ where $a_{0}=1$ and $a_{1}=9$. Let us define $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Our first step is to multiply both
sides by x^{n}.

$$
a_{n} x^{n}=\left(6 a_{n-1}-9 a_{n-2}\right) x^{n}
$$

Our next step is to sum over all values of n.

$$
\sum_{n=2}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty} 6 a_{n-1} x^{n}+\sum_{n=2}^{\infty} 9 a_{n-2} x^{n}
$$

Our next step is so modify the sums so that they match up with our definition of $A(x)$. Examining each term separately, we get:

$$
\begin{gathered}
\sum_{n=2}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty} a_{n} x^{n}+a_{0} x^{0}+a_{1} x^{1}-a_{0} x^{0}-a_{1} x^{1} \\
\sum_{n=2}^{\infty} a_{n} x^{n}=A(x)-1-9 x \\
\sum_{n=2}^{\infty} 6 a_{n-1} x^{n}=6 \sum_{n=2}^{\infty} a_{n-1} x^{n} \\
\sum_{n=2}^{\infty} 6 a_{n-1} x^{n}=6 x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} \\
\sum_{n=2}^{\infty} 6 a_{n-1} x^{n}=6 x \sum_{n=1}^{\infty} a_{n-1} x^{n-1} \\
\sum_{n=2}^{\infty} 6 a_{n-1} x^{n}=6 x \sum_{n=1}^{\infty} a_{n} x^{n}+a_{0} x^{0}-a_{0} x^{0} \\
\sum_{n=2}^{\infty} 6 a_{n-1} x^{n}=6 x(A(x)-1) \\
\sum_{n=2}^{\infty} 9 a_{n-2} x^{n}=9 \sum_{n=2}^{\infty} a_{n-2} x^{n} \\
\sum_{n=2}^{\infty} 9 a_{n-2} x^{n}=9 x^{2} \sum_{n=2}^{\infty} a_{n-2} x^{n-2} \\
\sum_{n=2}^{\infty} 9 a_{n-2} x^{n}=9 x^{2} \sum_{n=0}^{\infty} a_{n} x^{n} \\
\sum_{n=2} A(x) \\
x_{n} \\
\sum_{n}
\end{gathered}
$$

Now, plugging all of these back in to our original expression, we have:

$$
\begin{gathered}
A(x)-1-9 x=(6 A(x)-6 x)-9 x^{2} A(x) \\
A(x)-6 x A(x)+9 x^{2} A(x)=1+9 x+-6 x \\
A(x)\left(1-6 x+9 x^{2}\right)=1+3 x \\
A(x)=\frac{1+3 x}{1-6 x+9 x^{2}}=\frac{1}{(1-3 x)^{2}}+\frac{3 x}{(1-3 x)^{2}}
\end{gathered}
$$

Our final step is to solve for a closed form of a_{n}.

$$
\begin{gathered}
A(x)=\frac{1}{(1-3 x)^{2}}+\frac{3 x}{(1-3 x)^{2}} \\
A(x)=\sum_{n=0}^{\infty}(n+1)(3 x)^{n}+3 x \sum_{n=0}^{\infty}(n+1)(3 x)^{n} \\
A(x)=\sum_{n=0}^{\infty}(n+1)\left(3^{n}\right)\left(x^{n}\right)+\sum_{n=0}^{\infty}(n+1)\left(3^{n+1}\right) x^{n+1} \\
A(x)=\sum_{n=0}^{\infty}(n+1)\left(3^{n}\right)\left(x^{n}\right)+\sum_{n=1}^{\infty}(n)\left(3^{n}\right) x^{n} \\
A(x)=(0+1) 3^{0} x^{0}+\sum_{n=1}^{\infty}(n+1) 3^{n} x^{n}+\sum_{n=0}^{\infty} n 3^{n} x^{n} \\
A(x)=1+\sum_{n=1}^{\infty} 3^{n}(2 n+1) x^{n} \\
a_{n}=3^{n}(2 n+1)
\end{gathered}
$$

Which is our closed form for a_{n}.

