Review: Generating Functions Example: Tower of Hanoi.
The number of moves required for n discs is:

$$
a_{n+1} \text { where } a_{n+1}=2 a_{n}+1
$$

Our first step is to multiply both sides of the recurrence by x^{n} Which yields:

$$
a_{n+1} x^{n}=2 a_{n} x^{n}+x^{n}
$$

Our goal is to find $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$
Next, we will sum both sides:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n+1} x^{n}=\sum_{n=0}^{\infty} 2 a_{n} x^{n}+\sum_{n=0}^{\infty} x^{n} \\
& \frac{1}{x} \sum_{n=0}^{\infty} a_{n+1} x^{n+1}=2 A(x)+\frac{1}{1-x}
\end{aligned}
$$

In this case, to "match" the left hand side of the equation to $\mathrm{A}(\mathrm{x})$, we need to change the indice to $\mathrm{n}=0$. So we will add and subtract an " a_{0} " term.

$$
\begin{gathered}
\frac{1}{x} \sum_{n=1}^{\infty} a_{n+1} x^{n+1}+\frac{a_{0}}{x}-\frac{a_{0}}{x}=2 A(x)+\frac{1}{1-x} \\
\frac{A(x)}{x}-\frac{0}{x}=2 A(x)+\frac{1}{1-x} \\
A(x)-2 x A(x)=\frac{1}{1-x} \\
A(x)(1-2 x)=\frac{1}{1-x} \\
A(x)=\frac{x}{(1-x)(1-2 x)}
\end{gathered}
$$

We know that:

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}=1+x^{2}+x^{3}+\ldots
$$

Which means:

$$
\frac{1}{1-a x}=\sum_{n=0}^{\infty} a^{n} x^{n}=1+a x+a^{2} x^{2}+\ldots
$$

Now, in order to solve for $\mathrm{A}(\mathrm{x})$, we must solve by partial fractions.

$$
A(x)=\frac{x}{(1-x)(1-2 x)}=\frac{P}{1-x}+\frac{Q}{1-2 x}
$$

And our goal is to solve for P and Q . Our first step will be to find a common denominator for the right hand side of the equation.

$$
\begin{gathered}
\frac{x}{(1-x)(1-2 x)}=\frac{P(1-2 X)+Q(1-x)}{(1-x)(1-2 x)} \\
\frac{x}{(1-x)(1-2 x)}=\frac{(P+Q)-x(2 P+Q)}{(1-x)(1-2 x)} \\
x=P(1-2 x)+Q(1-x)
\end{gathered}
$$

Solving this equation for when $\mathrm{x}=1$ and $\mathrm{x}=1 / 2$, we get:

$$
\begin{aligned}
& 1=P(1-2)+Q(0)=>P=-1 \\
& 1 / 2=P(0)+Q(1 / 2)=>Q=1
\end{aligned}
$$

Now, we have:

$$
\begin{aligned}
A(x) & =\frac{-1}{1-x}+\frac{1}{1-2 x} \\
\sum_{n=0}^{\infty} a_{n} x^{n} & =-\sum_{n=0}^{\infty} x^{n}+\sum_{n=0}^{\infty} 2^{n} x^{n}
\end{aligned}
$$

Just looking at the coefficients of x^{n}, we get:

$$
a_{n}=2^{n}-1
$$

And our original recursive relation was $a_{n+1}=2 a_{n}+1$
Example: Fibonacci Numbers Let F_{n} be the $n^{t h}$ Fibonacci number where $F_{0}=1$ and $F_{1}=1$
Our recurrence formula is: $F_{n}=F_{n-1}+F_{n-2}$
Our goal is to find the generating function defined by $G(x)=\sum_{n=0}^{\infty} F_{n} x^{n}$ Our first step is to multiply both sides of the recurrence by x^{n}
Then we have:

$$
F_{n} x^{n}=F_{n-1} x^{n}+F_{n-2} x^{n}
$$

Next step: sum both sides over all values of n

$$
\sum_{n=2}^{\infty} F_{n} x^{n}=\sum_{n=2}^{\infty} F_{n-1} x^{n}+\sum_{n=2}^{\infty} F_{n-2} x^{n}
$$

Our next step is to add and subtract values of $F_{n} x^{n}$ so that it matches up with our definition of $G(x)$. Looking at the left hand side of our equation:

$$
\begin{gathered}
\sum_{n=2}^{\infty} F_{n} x^{n}+F_{1} x^{1}+F_{0} x^{0}-F_{1} x^{1}-F_{0} x^{0} \\
\sum_{n=0}^{\infty} F_{n} x^{n}-x-1
\end{gathered}
$$

Which gives us:

$$
G(x)-x-1=\sum_{n=2}^{\infty} F_{n-1} x^{n}+\sum_{n=2}^{\infty} F_{n-2} x^{n}
$$

Looking at the right hand side of our equation:

$$
\begin{gathered}
\sum_{n=2}^{\infty} F_{n-2} x^{n}=x^{2} \sum_{n=2}^{\infty} F_{n-2} x^{n-2} \\
\sum_{n=2}^{\infty} F_{n-1} x^{n}=x \sum_{n=2}^{\infty} F_{n-1} x^{n-1} \\
x \sum_{n=2}^{\infty} F_{n-1} x^{n-1}+x^{2} \sum_{n=2}^{\infty} F_{n-2} x^{n-2} \\
x \sum_{n=1}^{\infty} F_{n} x^{n}+x^{2} \sum_{n=0}^{\infty} F_{n} x^{n}
\end{gathered}
$$

Now, we have to add and subtract $F_{0} x^{0}$ so that it matches up with our definition of $G(x)$

$$
\begin{gathered}
\left(x \sum_{n=1}^{\infty} F_{n} x^{n}+F_{0} x^{0}-F_{0} x^{0}\right)+x^{2} G(x) \\
x(G(x)-1)+x^{2} G(x) \\
G(x)-x+x^{2} G(x)
\end{gathered}
$$

Now, we are left with:

$$
\begin{gathered}
G(x)-x-1=x(G(x)-1)+x^{2} G(x) \\
G(x)-x G(x)+x^{2} G(x)=x+1-x=1 \\
G(x)\left(1-x-x^{2}\right)=1
\end{gathered}
$$

$$
G(x)=\frac{1}{\left(1-x-x^{2}\right)}
$$

Using the quadratic formula to factor $\mathrm{G}(\mathrm{x})$, we get our two roots to be:

$$
\frac{-1+\sqrt{5}}{2} \text { and } \frac{-1-\sqrt{5}}{2}
$$

Next, we will define φ and ψ :

$$
\begin{aligned}
& \varphi=\frac{1+\sqrt{5}}{2} \\
& \psi=\frac{1-\sqrt{5}}{2}
\end{aligned}
$$

Which gives us:

$$
x^{2}-x-1=(x+\psi)(x+\varphi)
$$

Thus:

$$
G(x)=\frac{-1}{(x+\psi)(x+\varphi)}
$$

Our next step is to split $G(x)$ up using partial fractions.

$$
\begin{gathered}
\frac{-1}{(x+\psi)(x+\varphi)}=\frac{A}{x+\psi}+\frac{B}{x+\varphi} \\
-1=A(x+\varphi)+B(x+\psi)
\end{gathered}
$$

Plugging in $x=-\varphi$:

$$
\begin{gathered}
-1=A(0)+B(-\varphi+\psi) \\
-1=B(\sqrt[-1]{5}) \\
B=\frac{1}{\sqrt{5}}
\end{gathered}
$$

Plugging in $x=-\psi$:

$$
\begin{gathered}
-1=A(-\psi+\varphi)+B(0) \\
-1=A(\sqrt{5}) \\
A=\frac{-1}{\sqrt{5}} \\
G(x)=\frac{1}{\sqrt{5}}\left(\frac{1}{x+\varphi}-\frac{1}{x+\psi}\right)
\end{gathered}
$$

$$
\begin{gathered}
=>\frac{1}{\sqrt{5}}\left(\frac{\frac{1}{\varphi}}{\frac{x}{\varphi}+1}-\frac{\frac{1}{\psi}}{\frac{x}{\psi}+1}\right) \\
\frac{1}{\psi}=\frac{2}{1-\sqrt{5}} * \frac{1+\sqrt{5}}{1+\sqrt{5}} \\
=>\frac{2(1+\sqrt{5})}{-4}=-\frac{1+\sqrt{5}}{2}=-\varphi
\end{gathered}
$$

Thus, we have:

$$
\begin{gathered}
G(x)=\frac{1}{\sqrt{5}}\left(\frac{\frac{1}{\varphi}}{\frac{x}{\varphi}+1}-\frac{\frac{1}{\psi}}{\frac{x}{\psi}+1}\right) \\
G(x)=\frac{1}{\sqrt{5}}\left(\frac{-\psi}{1-x \psi}+\frac{\varphi}{1-x \varphi}\right) \\
G(x)=\frac{1}{\sqrt{5}}\left(\varphi \sum_{n=0}^{\infty} \varphi^{n} x^{n}-\psi \sum_{n=0}^{\infty} \psi^{n} x^{n}\right) \\
F_{n} x^{n}=\frac{1}{\sqrt{5}}\left(\varphi^{n+1} x^{n}-\psi^{n+1} x^{n}\right) \\
F_{n}=\frac{\varphi^{n+1}-\psi^{n+1}}{\sqrt{5}}
\end{gathered}
$$

Our closed form for the $n^{t h}$ Fibonacci number is $F_{n}=\frac{\varphi^{n+1}-\psi^{n+1}}{\sqrt{5}}$

