Math 315-Fall 2017

Homework 7

Due November 15, 2017
In mathematics you don't understand things. You just get used to them.

- John Von Neumann

Turn in one of the following: (You can turn in more for extra credit.)
(1) Let $B(x)$ be the generating function for the collection of all lattice paths with Up/Down steps which stay above the x -axis and have no peaks of height 1. (i.e., in a ballot sequence, a point where Alice and Bob are tied, after which Alice gets a vote followed by a vote for Bob.) For example, paths such as

are NOT permitted. Find the generating function $B(x)$ using the same ideas as we looked at in class.
(2) Find a generating function for sequences of integers $\left\{a_{1}, a_{2}, \ldots a_{n}\right.$ where $1 \leq a_{1} \leq a_{2} \leq$ $\cdots \leq a_{n}$ and $a_{i} \leq i$. Note: the empty sequence is considered such a sequence!
(3) Let $a_{0}=0$ and define $a_{n}=2 n \cdot a_{n-1}+n$! for $n \geq 1$. Find an explicit formula for a_{n} by using the EGF for the sequence $a_{0}, a_{1}, a_{2}, \ldots$. (Hint: Find a functional equation involving the EGF for a_{n}.)
(4) A permutation π of $[n]$ is said to be an involution if its cycle decomposition consists of only 1 - or 2 -cycles. Let \mathcal{I} be the collection of all involutions (for all $n \geq 0$.) Find the EGF for \mathcal{I}.

