Math 315-Fall 2017

Homework 5

Due October 30, 2017
A generating function is a clothesline on which we hang up a sequence of numbers for display.

- Herbert Wilf

Turn in:

(1) (a) Determine the number of positive integers $k \leq 15,000$ that are divisible by $3,4,5$, or 10 .
(b) Determine the number of positive integers $k \leq 15,000$ that are neither perfect squares nor perfect cubes.
(2) (a) Consider the following function:

$$
f(x)=\frac{-1}{\sqrt{1-x^{2}}}
$$

Use Newton's Binomial Theorem to find the first four nonzero terms of the power series for $f(x)$.
(b) Take the integral of your answer to part (a) to find the first four nonzero terms of the power series for $g(x)=\cos ^{-1} x$.
(3) (a) Consider the following function:

$$
f(x)=\frac{x}{(1-x)^{2}}
$$

Find the power series for $f(x)$.
(b) Use your answer to part (a) to find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.
(c) Find a function $g(x)$ that has power series $\sum_{k=1}^{\infty} k(k-1) x^{k}$.
(d) Use your answer to part (c) to find the sum of the series $\sum_{n=1}^{\infty} \frac{n(n-1)}{2^{n}}$.
(4) (Exercise 24, Chapter 8) Let $a_{0}=1$ and $a_{1}=4$ and for $n \geq 2$ let a_{n} satsify the following recurrence relation:

$$
a_{n+1}=8 a_{n}-16 a_{n-1}
$$

(a) Find the generating function for the numbers a_{n}.
(b) Find a closed formula for a_{n}.

