Math 315 - Fall 2017

Homework 4

Due October 18, 2017
Last time, I asked: "What does mathematics mean to you? And some people answered: The manipulation of numbers, the manipulation of structures." And if I had asked what music means to you, would you have answered:"The manipulation of notes?"

- Serge Lang

Turn in:

(1) Find the number of permutations of length 6 who's square is the identity permutation. (What cycle types result in the identity when squared?)
(2) Let $\pi=p_{1} p_{2} \cdots p_{n}$ be a permutation of n (in one line notation). An inversion of π is a pair $\left\{p_{i}, p_{j}\right\}$ so that $i<j$ but $p_{i}>p_{j}$. Let us call a permutation odd (respectively even) of it has an odd (respectively even) number of inversions. Prove that any permutation of length n consisting entirely of one cycle is even if n is odd and odd if n is even.
(3) Let $a(n, k)$ be the number of permutations of length n with k cycles in which the entries 1 and 2 are in the same cycle. Prove that for $n \geq 2$:

$$
\sum_{k=1}^{n} a(n, k) x^{k}=x(x+2)(x+3) \cdots(x+n-1)
$$

(4) A group of n tourists arrive at a restaurant. They sit down around an unspecified number of tables, leaving no table empty. Then each table orders one of the r possible drinks. Prove that the number of ways this can happen is

$$
r^{(n)}=r(r+1)(r+2) \cdots(r+n-1)
$$

(5) Let $n \geq 6$ be even. How many permutations $p_{1} p_{2} \cdots p_{n}$ are there in which at least one of p_{1}, p_{2} or p_{3} is even?

