Math 315-Fall 2017

Homework 2

Due September 21, 2017
It is difficult to find a definition of combinatorics that is both concise and complete, unless we are satisfied with the statement "Combinatorics is what combinatorialists do"

- W.T. Tutte

Turn in:

(1) (Exercise 23, Chapter 2) Prove that for all positive integers n,

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots n)^{2}
$$

(2) (Exercise 31, Chapter 2) Let $a_{1}=1$ and let $a_{n+1}=3 \cdot a_{n}+4$ for $n \geq 1$. Prove that for all positive integers n the inequality $a_{n} \leq 3^{n}$ holds.
(3) (Exercise 42, Chapter 3) A host invites n couples to a party. She wants to ask a subset of the $2 n$ guests to give a speech, but she does not want to ask both members of any couple to give speeches. In how many ways can she proceed? (Hint: your answer shouldn't include a summation sign or a ...)
(4) Prove the following identity:

$$
\binom{n}{k}-\binom{n-3}{k}=\binom{n-1}{k-1}+\binom{n-2}{k-1}+\binom{n-3}{k-1}
$$

Hint: Use a combinatorial proof. Let S be a set with three distinguished elements a, b, and c and count certain k-subsets of S.

