Math 315-Fall 2017

Homework 1

Due September 11, 2017
There is no problem in all mathematics that cannot be solved by direct counting.

Turn in:

(1) Show that if $n+1$ distinct integers are chosen from the set $\{1,2, \ldots, 2 n\}$, then there are always two whose greatest common divisor is 1 .
(2) (Exercise 24, Chapter 1) Find all 4-tuples (a, b, c, d) of distinct positive integers so that $a<b<c<d$ and

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=1
$$

Hint: Look at the solution to Exercise 2 in Chapter 1.
(3) Let S be a set of 17 points inside a cube of side length 1 . Prove that there exists a sphere of radius $1 / 2$ which encloses at least three of the points.
(4) For each n describe a sequence of n^{2} numbers which does not contain a monotone increasing sequence of length $n+1$, nor a monotone decreasing sequence of length $n+1$. This shows that the Erdős-Szekeres Theorem is tight.

