
Fermat’s Theorem: 
  If the modulus P is prime, then  𝑎𝑃−1 ≡ 1 (mod P) for all a ≠ 0 (mod P). 

  → Whenever the modulus is prime, we can treat all the exponents (modulo P-1) 

 

Another way to compute inverses 𝑎−1  (mod P) 

- Euclid: find x and y gcd (a, P) 
                 ax + Py = 1 
                  𝑎−1  ≡ x (mod P) 

- 𝐹𝑒𝑟𝑚𝑎𝑡 𝑎−1  ≡ 𝑎𝑃−1 (mod P)                 *Compute using repeated squaring. 

(all that matters in the exponent is the remainder (mod P-1), -1(mod P-1) ≡ P-1 (mod P-1)) 

 

Euler Theorem (Extended version of Fermat’s Theorem to 
composite moduli) 
                    If gcd(a,n) = 1 then 𝑎𝜑(𝑛)≡ 1 (mod n) 

*Note that if n = P is prime then φ(P) = P-1,                                       𝑎𝜑(𝑝)≡𝑎𝑃−1≡1(mod P) 

 

Example: 

                  n = 10, a= 3 

                  Compute 3𝜑(10)  = 34                                                            (  φ(10) = φ(2) x φ(5) 

                                                 ≡ 92                                                                                    = (2-1) (5-1) 

                                                 ≡ 81                                                                                 = 1 x 4 = 4 )  

                                                 ≡ 1 (mod 10) 

None Example: 4𝜑(10) mod (10) 

                            Gcd(4,10) = 2 → 44≡ 162 ≡ 256 ≡ 6 (mod 10) * Not equal  to 1 

*Euler’s Theorem doesn’t apply. 



Basic principle for exponents to any modulus: 
If we’re working (mod n) we can treat all the exponents mod φ(n) 

*This doesn’t necessarily work if the base has factors in common with the exponent.  

If gcd(n,m) = 1 then φ(n,m) = φ(n) x φ(m)                                (φ(n) is a multiplicative function) 

 φ(36) ≠ φ(6) x φ(6)                                                                            * φ(𝑃𝑘) = 𝑃𝑘−1 (P-1) 

 

Example: E(x) = 𝑥 7 (mod 22) 

                   Find a decryption function, D(y)= 𝐸−1(x), so that D(E(x)) = x 

Guess: D(y) ≡ 𝑦𝑑(mod 22) 

              (𝑥 7)𝑑 ≡ x (mod 22) 

             7d ≡ 1 (mod φ(22)) 

                        φ(22) = φ(2 x 11) → = φ(2) x φ(11) →= 1 x 10 = 10  

 Need 7d≡1(mod 10)  

           d = 3                                           D(y) ≡ 𝑦3(mod 22) 

 

E(x) ≡ 𝑥 5(mod 22) *Doesn’t have a decryption function because gcd(5, φ(22)) = 5 (not 1) 

 

RSA invented by Rivest, Shamir, and Adlemann uses this 
idea to do public key cryptography. 
 

(RSA Set Up) 
Alice picks two big primes p and q, (both have 120 digits), She computes n = (p)(q) 

She picks an encryption exponent e, gcd(e, (p-1)(q-1) ) = 1 

In practice e = 65537 



Alice’s Public Key is (n,e)          *(She keeps p,q and d secret) 

Alice tells everyone this key. 

Anyone can use this key to send a message to Alice using: E(x) ≡ 𝑥 𝑒  (mod n) 

 

To decrypt we need a decryption function D(y) ≡ 𝑦𝑑(mod n) 

Alice computes d ≡ 𝑒−1(mod φ(n))              φ(n) = (p-1)(q-1) 

                                      d ≡ 𝑒−1(mod(p-1)(q-1))   → Euclid’s Algorithm  

 

Why can’t Eve find D(y)? 

Eve has to factor n to compute φ(n) 

No one knows a fast way to factor numbers this big  


