RSA: Public Key Crypto

• Ex: Alice creates a public RSA key

 \circ She picks 2 primes: p,q. $p = 7$, $q = 7$. $n = pq = 7 * 11 = 77$ $e₁$ Need $gcd(e, (p - 1)(q - 1)) = 1$ $e = 17$ \circ Alice's Public Key in $(n, e) = (77, 17)$. Everyone knows these numbers. \circ Bob wants to send the message $m = 9$ to Alice. ○ Bob computes $E(9) \equiv 9^{17} (mod 77)$ $17 = 16 + 1$ $9^1 \equiv 9 \pmod{77}$ $9^2 \equiv 81 \equiv 4 \pmod{77}$ $9^4 \equiv 4^2 \equiv 16 \pmod{77}$ $9^8 \equiv 16^2 \equiv 256 \equiv 25 \pmod{77}$ $9^{16} \equiv 25^2 \equiv 625 \equiv 9 \pmod{77}$ $9^{17} \equiv (9^{16})(9^1) \equiv 9 \times 9 \equiv 81$ ○ To decrypt, Alice has to compute $d \equiv e^{-1} (mod \phi(n))$ Note: $\phi(n) = (p - 1)(q -)$ $d \equiv 17^{-1} (mod (7-1)(11-1))$ Note: $(7-1)(11-1) = 60$ Euclids' Algorithm $gcd(17, 60)$ $60 = 3(17) + 9$ $17 = 1(9) + 8$ $9 = 1(8) + 1$ $1 = 9 - 1(8)$ $= 9 - 1(17 - 1(9)) = 2(9) - 1(17)$

- $= 2(60 3(17)) 1(17)$ $1 = 2(60) - 7(17)$
- RSA is secure as long as n is too big to factor.
- What if there was an easier way to compute $\phi(n)$? (A way that didn't require factoring?)
- Computing $\phi(n)$ and Factoring *n* are equally difficult.
- Suppose you have a fast way to compute $\phi(n)$:
	- $\phi(n) = \phi(pq) = (p 1)(q 1)$

• Compute

$$
V = n - \phi(n) + 1
$$

 $= pq - (p - 1)(q - 1) + 1$

 $= pq - (pq - p - q + 1) + 1$ $= p + q$ p and q are the roots of $x^2 - vx + n = (x - q)(x - p)$

$$
p,q=\frac{v\pm\sqrt{v^2=4n}}{2}
$$

• Suppose $n = 27,906,817$ $\phi(n) = 27,894,996$ Use this info to find p , q .

 $p = 8563$

$$
\circ \quad q = 3259
$$

- Alice needs two really large primes p and q , essentially p and q need to be "brand new", prime numbers never used before.
- There are much faster ways to check if a number is prime than to factor it.
- Fermat Primality test "compositeness".
- Fermat's Little theorem: If p is prime and $a \not\equiv 0 \pmod{p}$ then $a^{p-1} \equiv 1 \pmod{p}$.
	- Contrapositive: if a^{p-1} $\not\equiv$ 1(*mod p*) then *p* is not prime.
- Steps to Fermat's Primality test:
	- \circ We want to test if *n* is prime.
		- 1) Pick a randomly $1 < a < n 1$
		- 2) Compute a^{n-1} (mod n)
	- \circ If we don't get 1, *n* is composite.
	- If we do get 1, n is "probably prime".
- Ex: $n = 5$, $a = 2$. Compute $2^{n-1} \equiv 2^4 \equiv 16 \equiv 1 \pmod{5}$
	- Fermat says 5 is "probably prime".
- Test if $n = 33$ is prime.
	- \circ Pick an α

$$
\begin{aligned}\n a &= 5 \\
5^{33-1} &\equiv 5^{32}\n \end{aligned}
$$

■ Repeated squaring:

 $5^2 \equiv 25 \pmod{33}$ $5^4 \equiv 25^2 \equiv (-8)^2 \equiv 64 \equiv 31 \pmod{33}$ $5^8 \equiv 31^2 \equiv (-2)^2 \equiv 4 \pmod{33}$ $5^{16} \equiv 4^2 \equiv 16 \pmod{33}$ $5^{32} \equiv 16^2 \equiv 256 \equiv 25 \mod 33$. Note: Not 1 (*mod* 33)

○ 33 is **not prime**.

- Test $n = 21$ using Fermat's test and $a = 13$. Compute 13^{20} (*mod* 21) $13^{2} \equiv (-8)^{2} \equiv 64 \ (mod \ 21) \equiv 1 \ (mod \ 21)$ $13^4 \equiv 1^2 \equiv 1 \pmod{21}$ $13^8 \equiv 1$ $13^{16} \equiv 1 \ (mod \ 21)$ $13^{20} \equiv 13^{16} \times 13^4 \equiv (1)(1) \equiv 1 \pmod{21}$ \circ Fermat says $n = 21$ is "probably prime". \circ Keep trying more values of *a* to see if they also give probably prime. Try $a = 2$, $2^{20} \equiv (2^{16})(2^4)(mod 21)$ $2^2 \equiv 4 \ (mod \ 21)$ $2^4 \equiv 4^2 \equiv 16 \ (mod \ 21)$ $2^8 \equiv 16^2 \equiv (-5)^2 \equiv 25 \equiv 4 \ (mod \ 21)$ $2^{16} \equiv 4^2 \equiv 16 \pmod{21}$ $2^{20} \equiv 2^{16} \times 2^4 \equiv 16 \times 16 \equiv 4 \pmod{21}$. Note: Not 1. 21 is composite.
- If *n* is composite but $a^{n-1} \equiv 1 \pmod{n}$, we call *n* a base-a **pseudoprime**.
	- 21 is a base-13 pseudoprime.
- There exists composite numbers v^n which are pseudoprimes to ever base coprime to *n*. These are called carmichael numbers. The smallest example is $n = 561 = 3 \times 11 \times 17$.