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Summary: On this day we learned about the Modular Exponentiation technique, which allows us to 
calculate ab(mod m), since the numbers can never get larger than m2. We also learned about the 3 
pass protocol which is a technique of public key encryption, this technique is however rarely used 
due to the inefficiency of the technique caused by necessitating 3 separate transmissions which 
utilizes a large amount of bandwidth. 

 

Notes: 

Modular Exponentiation: This lets us compute ab(mod m), this technique is very quick, numbers 
involved never get larger than m2, If the modulus is prime then we can do even quicker 
computations, this is Fermat’s “little” Theorem. It states that If p is prime and a is not 0(mod p), 
then ap-1=1 (mod p) 

Ex:  P = 5, A = 3 

34 (mod 5) 

32 = 9 = 4(mod 5) 

34 = 42 = 16 = 1(mod 5) 

Ex 2: P = 11, A=2 

210 = (mod 10) 

 22 = 4(mod 11) 

24 = 42 = 16 = 5(mod 11) 

28 = 52= 25 = 3 (mod 11) 

210 = 28 + 22 = 3(4) =12 = 1 (mod 11) 

“Proof of Fermat’s little theorem” == FLT 

Since a is not 0(mod p) 

Take all numbers between 1 and p-1, then multiply all of them by a: 

1*a, 2*a, 3*a, … (p-1)a (mod p) 

a has an inverse and all the list for multiplication ( 1*a, 2*a, 3*a, … (p-1)a (mod p)) are different 
(mod p), which means numbers 1,2, …, p-1 are all in the list just in some different order. 

Multiply these all together 



(1*a)(2*a)(3*a)…((p-1)(a)) (mod p) == 1 * 2 *3 *, … * (p-1) (mod p) 

All the numbers 1,2, … p-1 have inverses and thus can be used to cancel numbers out, therefore 
this means that ap-1=1 (mod p) 

 

How can we use Fermat’s theorem: 

Lets say we want to solve 323 (mod 11) 

FLT tells us that 310 = 1(mod 11) 

Therefore 320 – (310)2 = 1(mod 11) 

Therefore 323(mod 11) == 33 (mod 11) 

Therefore we only need to solve for 323 = 320 * 33(mod 11) == 1 * 33(mod 11) 

33 == 27 == 5 (mod 11) Therefore 323 == 5(mod 11) 

 

Ex: Find 761(mod 31)  

761== 732+16+8+4+1  

FTL states: 31 is prime so 730 = 1 (mod 31) 

761 = 760 * 71 == 1(7) = 7(mod 31) = (730)2 * 71 

 

Basic principle of exponents modulo a prime p If your equation is mod p), treat all exponents (mod 
p-1)  

Ex: 550 (mod 19) 

Work mod (18) in the exponent, so 50 = 14 (mod 18), 50 == 514(mod18) 

 

We can utilize this tequnique to “undo” something to an exponent E(x) =  E(x) = xa (mod p) 

 

Ex: E(x) – x5(mod 17), So lets use it to decrypt this example, 

 Guesss (D(y) == yd(mod p) 

D(E(x)) = x == (x5)d == x1 (mod 17) 

X3d = x1 = x1(mod 17)) 

Need  



5d ==1(mod16) 

Find 5-1 (mod 1C) 

Euclid: 16/5 = 3 R(1)  

16 = 3(5) +1 

1= 16 – 3(5) 

5-1 == -3 == 13(mod 16) 

E(x) == x5(mod 17) 

D(y) == y13 (mod 17) 

(X5)13 == x65 == x64 * x1 == (x16)4 * x 1 ) (mod 17) == x (mod 17), Is tE(x) = xe(mod p) better than E(x) = 
ax+b (mod p)?, If you know ae == b(mod p), you know a and b but not e.  

Solving for e is difficult which is called the discrete log problem, If this wasn’t mod p then we can 
solve for e using basic logarithm rules => ae = b solve for e, log(a2) = log(b) 

Elog(a) = log(b), therefore e= log(b)/log(a), Note that this never works in mod p. 

 

3 pass protocol: 

Physical world vrsn 

Alice has a box she locks it using her padlock and she mails the box to Bob, then Bob add his own 
padlocks, then bob sends it back to Alice who then unlocks her lock and resends the package to 
Bob. Then Bob unlocks his lock using his key and then can retrieve whatever was in the box 

3 pass protocol mathematical version: Alice picks a large prime P, and tells everyone the P value, 
she then picks an encryption exponent a where the gcd(a,p-1) = 1 

Then Alice can compute the dectryption exponent a-1 (mod p-1) == A, then Bob who also know the P 
value, pica a b with gcd(b,p-1) = 1 then computes B = b-1(mod p-1) 

Meaning we now have  

EA = xa(mod p) 

DA(y) = yA(mod p) 

EB = xb(mod p) 

DB(y) = yB(mod p),  

Then Alice wants to send the plaintext, m(mod p), she computes C1 = Ea(m) = ma (mod p) then sends 
that to Bob.  

Then Bob encrypts it again: C2 = EB(c1) = C1
b(mod p) and sends that back to Alice 



Then Alice decrypts, C3 == DA(C2)= C2
A(mod p), then sends that to Bob. 

Then Bob decrypts D(C3) = C3
B(mod p),  and then recovers m, which results in there never being a 

key or an unencrypted file being sent.  

 


