We want to find a field with 4 element (\mathbb{F}_4)

 \mathbb{F}_4 is not the same as \mathbb{Z}_4 . This can be proven with addition and multiplication tables. In this example $\mathbb{Z}_4 = (0, 1, 2, 3)$: Remember this is (mod 4)

+	0	1	2	3	Х	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	2	3	0	1	0	1	2	3
2	2	3	0	1	2	0	2	0	2
3	3	0	1	2	3	0	3	2	1

While everything is OK with addition there are a few problems with multiplication. The row for 2 has no inverse and has repetition. This means that there is no way to undo multiplication by 2. This also means that \mathbb{Z}_4 cannot be a field.

We can use polynomials to find \mathbb{F}_4

Let $\mathbb{Z}_2[x]$ be a set of all polynomials with coefficients (mod 2) (0 and 1) This is a ring so we can add, subtract, and multiply any two polynomials in the set.

In modulo 2 arithmetic addition and subtraction are the same operation and give the same result. Because the two operations are the same, there is no need to use a negative sign when in modulo 2. Multiplication still works identical to usual polynomial multiplication except you keep the coefficients in modulo 2.

Ex: Have $f(x) = x^3 + x^2 + 1$ and $g(x) = x^3 + 1$. Both f(x) and g(x) are in $\mathbb{Z}_2[x]$ $f(x) + g(x) \equiv (x^3 + x^2 + 1) + (x^3 + 1) \equiv 2(x^3) + x^2 + 2(x) \equiv x^2 \pmod{2}$ $f(x) - g(x) \equiv (x^3 + x^2 + 1) - (x^3 + 1) \equiv x^2$ $f(x) * g(x) \equiv (x^3 + x^2 + 1) * (x^3 + 1) \equiv x^6 + x^5 + x^3 + x^2 + 1 \equiv x^6 + x^5 + 2(x^3) + x^2 + 1 \equiv x^6 + x^5 + x^2 + 1$ We can't do regular division in $\mathbb{Z}_2[x]$ but we can do division with remainder.

Find the remainder when $x^5 + x^4 + x^2 + 1$ is divided by $x^3 + x + 1$

$$\begin{array}{r} x^{2} + x - 1 \\ x^{3} + x + 1 \\ \hline x^{5} + x^{4} + x^{2} + 1 \\ - x^{5} - x^{3} - x^{2} \\ \hline x^{4} - x^{3} \\ \hline x^{4} - x^{3} \\ \hline - x^{4} - x^{2} - x \\ \hline - x^{3} - x^{2} - x + 1 \\ \hline x^{3} + x + 1 \\ \hline - x^{2} + 2 \end{array}$$

The long division gives us $R = -x^2 + 2$ but because we are in (mod 2) the negative sign and the 2 are canceled out leaving $R = x^2$

We can use the rules of addition/subtraction, multiplication, and division with remainder to find any polynomial mod another polynomial

Find $(x^2 + 1) + (x + 1) \pmod{x^3 + x + 1}$ and $(x^2 + 1) * (x + 1) \pmod{x^3 + x + 1}$ $(x^2 + 1) + (x + 1) \equiv (x^2 + x + 2(x)) \equiv (x^2 + x) \pmod{x^3 + x + 1}$ $x^2 + x$ has a lower leading degree than the modulus so it is less then the modulus.

 $(x^{2}+1) * (x+1) \equiv (x^{3}+x^{2}+x+1)$

 $\left(x^3+x^2+x+1\right)$ has the same degree as the modulus so it needs to be divided with remainder

$$\frac{1}{x^{3} + x + 1} \underbrace{\frac{1}{x^{3} + x^{2} + x + 1}}_{x^{2}} = \frac{1}{x^{2}}$$

$$\mathbf{R} = x^{2} \text{ so } (x^{3} + x^{2} + x + 1) \equiv (x^{2}) \pmod{x^{3} + x + 1}$$

By using Euclid's algorithm and Euclid's extended algorithm we can find the GCD and inverse of polynomials.

Use Euclid's extended algorithm to find the GCD of
$$x^5 + x^4 + x^2 + 1$$
 and $x^3 + x + 1$
Step 1)

$$x^3 + x + 1) \frac{x^2 + x - 1}{x^5 + x^4} + x^2 + 1$$

$$-\frac{x^5 - x^3 - x^2}{x^4 - x^3}$$

$$-\frac{x^4 - x^2 - x}{-x^3 - x^2 - x + 1}$$

$$-\frac{x^3 - x^2 - x}{-x^3 - x^2 - x + 1}$$

$$-\frac{x^3 - x^2 - x}{-x^2 - x + 1}$$
Like said earlier because this is modulus 2 any minus/negative and any 2s are canceled out giving $R = x^2$
Step 2)

$$x^2) \frac{x}{x^3 + x + 1}$$

$$R = x + 1$$
Step 3)

$$x + 1) \frac{x - 1}{-x^2 - x}$$

$$-\frac{x + 1}{1}$$

$$R = 1$$
Step 4)

$$1) \frac{x + 1}{x + 1}$$

$$-\frac{x}{-1}$$

$$\frac{-1}{0}$$

$$\begin{split} R &= 0 \text{ meaning that the previous remainder of 1 is the GCD} \\ x^5 + x^4 + x^2 + 1 &= (x^2 + x + 1)(x^3 + x + 1) + (x^2) \\ x^3 + x + 1 &= x(x^2) + (x + 1) \\ x^2 &= (x + 1)(x + 1) + 1 \end{split}$$

If f(x) and g(x) are polynomials and the GCD of (f,g) is 1, then f has an inverse (mod g(x)) which can be found using euclid's extended algorithm and the linear combination of f and g. The linear combination of f and g is c(x)f(x) + d(x)g(x) = 1

Use Eucid's extended algorithm to find the liner combination for $x^5 + x^4 + x^2 + 1$ and $x^3 + x + 1$ and the inverse of $(x^3 + x + 1) \pmod{x^5 + x^4 + x^2 + 1}$

Using the equations from the previous question we have, $1 = 1(x^2) + (x+1)(x+1)$ $(x+1) = 1(x^3 + x + 1) + x(x^2)$ $(x^2) = 1(x^5 + x^4 + x^2 + 1) + (x^2 + x + 1)(x^3 + x + 1)$

Then using the 3 steps of Eucid's extended algorithm which are,

1) Substitute

2) Distribute

3) Combine like terms

We get,

$$\begin{split} 1 &\equiv (x^2) + (x+1)(x^3 + x + 1 + x(x^2)) \equiv (x^2) + (1+x)(x^3 + x + 1) + (x^2 + x)(x^2) \equiv \\ (x^2 + x + 1)(x^2) + (x+1)(x^3 + x + 1) \\ &\equiv (x^2 + x)((x^5 + x^4 + x^2 + 1) + (x^2 + x + 1)(x^3 + x + 1)) + (x+1)(x^3 + x + 1) \equiv \\ (x^2 + x)(x^5 + x^4 + x^2 + 1) + (x^4 + x^2 + x)(x^3 + x + 1) \\ &\qquad (x^2 + x)(x^5 + x^4 + x^2 + 1) + (x^4 + x^2 + x)(x^3 + x + 1) \equiv 1 \\ f(x) &= (x^5 + x^4 + x^2 + 1) \\ g(x) &= (x^3 + x + 1) \\ c(x) &= (x^2 + x) \\ d(x) &= (x^4 + x^2 + x) \end{split}$$

 $x^4 + x^2 + 1$ is the inverse of $(x^3 + x + 1) \pmod{x^5 + x^4 + x^2 + 1}$