We want to find a field with 4 element (\mathbb{F}_4)

 \mathbb{F}_4 is not the same as \mathbb{Z}_4 . This can be proven with addition and multiplication tables. In this example $\mathbb{Z}_4 = (0, 1, 2, 3)$: Remember this is (mod 4)

While everything is OK with addition there are a few problems with multiplication. The row for 2 has no inverse and has repetition. This means that there is no way to undo multiplication by 2. This also means that \mathbb{Z}_4 cannot be a field.

We can use polynomials to find \mathbb{F}_4

Let $\mathbb{Z}_2[x]$ be a set of all polynomials with coefficients (mod 2) (0 and 1) This is a ring so we can add, subtract, and multiply any two polynomials in the set.

In modulo 2 arithmetic addition and subtraction are the same operation and give the same result. Because the two operations are the same, there is no need to use a negative sign when in modulo 2. Multiplication still works identical to usual polynomial multiplication except you keep the coefficients in modulo 2.

Ex: Have $f(x) = x^3 + x^2 + 1$ and $g(x) = x^3 + 1$. Both $f(x)$ and $g(x)$ are in $\mathbb{Z}_2[x]$ $f(x) + g(x) \equiv (x^3 + x^2 + 1) + (x^3 + 1) \equiv 2(x^3) + x^2 + 2(1) \equiv x^2 \pmod{2}$ $f(x) - g(x) \equiv (x^3 + x^2 + 1) - (x^3 + 1) \equiv x^2$ $f(x)*g(x) \equiv (x^3+x^2+1)*(x^3+1) \equiv x^6+x^5+x^3+x^3+x^2+1 \equiv x^6+x^5+2(x^3)+x^2+1 \equiv x^6+x^5+3(x^4)$ $x^6 + x^5 + x^2 + 1$

We can't do regular division in $\mathbb{Z}_2[x]$ but we can do division with remainder.

Find the remainder when $x^5 + x^4 + x^2 + 1$ is divided by $x^3 + x + 1$ $x^2 + x - 1$ $(x^3 + x + 1)$ $x^5 + x^4$ $+ x^2$ $+ 1$ $-x^5 - x^3 - x^2$ x^4-x^3 $-x^4$ – x^2-x $-x^3-x^2-x+1$ $x^3 + x + 1$ $-x^2$ + 2

The long division gives us $R = -x^2 + 2$ but because we are in (mod 2) the negative sign and the 2 are canceled out leaving $R = x^2$

We can use the rules of addition/subtraction, multiplication, and division with remainder to find any polynomial mod another polynomial

Find
$$
(x^2 + 1) + (x + 1)
$$
 (mod $x^3 + x + 1$) and $(x^2 + 1) * (x + 1)$ (mod $x^3 + x + 1$) $(x^2 + 1) + (x + 1) \equiv (x^2 + x + 2(x)) \equiv (x^2 + x)$ (mod $x^3 + x + 1$) $x^2 + x$ has a lower leading degree than the modulus so it is less than the modulus.

$$
(x^{2} + 1) * (x + 1) \equiv (x^{3} + x^{2} + x + 1)
$$

 $(x^{3} + x^{2} + x + 1)$ has the same degree as the modulus so it needs to be divided with remainder

$$
x^{3} + x + 1 \overline{\smash) \frac{x^{3} + x^{2} + x + 1}{-x^{3} - x - 1}}
$$
\n
$$
x^{2}
$$
\n
$$
R = x^{2} \text{ so } (x^{3} + x^{2} + x + 1) \equiv (x^{2}) \pmod{x^{3} + x + 1}
$$

By using Euclid's algorithm and Euclid's extended algorithm we can find the GCD and inverse of polynomials.

 Γ

Use Euclid's extended algorithm to find the GCD of
$$
x^5 + x^4 + x^2 + 1
$$
 and $x^3 + x + 1$
\n**Step 1)**
\n
$$
x^3 + x + 1 \overline{\smash) x^5 + x^4 + x^2 + 1}
$$
\n
$$
x^4 - x^3
$$
\n
$$
-x^4
$$
\n
$$
-x^3 - x^2
$$
\n
$$
-x^4
$$
\n
$$
-x^3 - x^2 - x
$$
\n
$$
-x^3 - x^2 - x + 1
$$
\n
$$
x^3 + x + 1
$$
\n
$$
-x^3 - x^2 - x + 1
$$
\n
$$
x^3 + x + 1
$$
\n
$$
-x^2 + 2
$$
\nLike said earlier because this is modulus 2 any minus/negative and any 2s are canceled
\nout giving $R = x^2$
\n**Step 2)**
\n
$$
x^2 \overline{\smash) x^3 + x + 1}
$$
\n
$$
x + 1
$$
\n
$$
x = x + 1
$$
\n**Step 3)**
\n
$$
x + 1 \overline{\smash) x^2 - x}
$$
\n
$$
-x^2 - x
$$
\n
$$
-x
$$
\n
$$
x + 1
$$
\n
$$
R = 1
$$
\n**Step 4)**
\n
$$
x + 1
$$
\n
$$
x
$$

 $R = 0$ meaning that the previous remainder of 1 is the GCD $x^5 + x^4 + x^2 + 1 = (x^2 + x + 1)(x^3 + x + 1) + (x^2)$ $x^3 + x + 1 = x(x^2) + (x + 1)$ $x^2 = (x+1)(x+1) + 1$

If $f(x)$ and $g(x)$ are polynomials and the GCD of (f,g) is 1, then f has an inverse $(\text{mod } q(x))$ which can be found using euclid's extended algorithm and the linear combination of f and g. The linear combination of f and g is $c(x)f(x) + d(x)g(x) = 1$

Use Eucid's extended algorithm to find the liner combination for $x^5 + x^4 + x^2 + 1$ and $x^3 + x + 1$ and the inverse of $(x^3 + x + 1) \pmod{x^5 + x^4 + x^2 + 1}$ Using the equations from the previous question we have, $1 = 1(x^2) + (x+1)(x+1)$ $(x+1) = 1(x^3 + x + 1) + x(x^2)$ $(x^{2}) = 1(x^{5} + x^{4} + x^{2} + 1) + (x^{2} + x + 1)(x^{3} + x + 1)$ Then using the 3 steps of Eucid's extended algorithm which are, 1) Substitute 2) Distribute 3) Combine like terms We get, $1 \equiv (x^2) + (x+1)(x^3+x+1+x(x^2)) \equiv (x^2) + (1+x)(x^3+x+1) + (x^2+x)(x^2) \equiv$ $(x^{2} + x + 1)(x^{2}) + (x + 1)(x^{3} + x + 1)$ $\equiv (x^2+x)((x^5+x^4+x^2+1)+(x^2+x+1)(x^3+x+1))+(x+1)(x^3+x+1) \equiv$ $(x^{2}+x)(x^{5}+x^{4}+x^{2}+1)+(x^{4}+x^{2}+x)(x^{3}+x+1)$ $(x^{2}+x)(x^{5}+x^{4}+x^{2}+1)+(x^{4}+x^{2}+x)(x^{3}+x+1) \equiv 1$ $f(x) = (x^5 + x^4 + x^2 + 1)$ $g(x) = (x^3 + x + 1)$ $c(x) = (x^2 + x)$ $d(x) = (x^4 + x^2 + x)$ $x^4 + x^2 + 1$ is the inverse of $(x^3 + x + 1) \pmod{x^5 + x^4 + x^2 + 1}$