MATH 314 Spring 2022 - Class Notes

4/14/2022
Michael Fazio

Summary:

In class we covered ways of finding large prime numbers through Fermat's Primality Test and the Miller-Rabin Primality Test, in addition to learning a factoring trick to find composite numbers

Notes: Alice first picks a random large odd number, followed by either primality test.

Fermat's Primality Test: Key idea is to use Fermat's little theorem backwards, where it says "If p is prime then $a^{p-1} \equiv 1(\bmod p)$ ". Fermat's little theorem backwards then is $a^{n-1} \not \equiv 1(\bmod n)$, then n is not prime.

Ex. Test if $\mathrm{n}=33$ is prime, using a where $2<a<n-2$ to compute $a^{n-1}(\bmod n)$, if this does not equal $1, \mathrm{n}$ is composite.

$$
a=5, n=33
$$

$$
\begin{gathered}
5^{32} \quad(\bmod 33) \equiv 5^{2 * 16} \quad(\bmod 33) \\
\equiv 25^{16} \quad(\bmod 33) \equiv-8^{2 * 8} \quad(\bmod 33) \equiv 64^{8} \quad(\bmod 33) \equiv 31^{8} \quad(\bmod 33) \\
\equiv-2^{2 * 4} \quad(\bmod 33) \equiv 4^{4} \quad(\bmod 33) \equiv 16^{2} \quad(\bmod 33) \equiv 256 \quad(\bmod 33) \equiv 25 \not \equiv 1
\end{gathered}
$$

meaning 33 is composite

Ex 2. $a=13, n=21$

Compute $a^{n-1}(\bmod n)$ or $13^{20}(\bmod 21)$

$$
\begin{gathered}
13^{20} \quad(\bmod 21) \equiv 13^{4+16} \quad(\bmod 21) 13^{2} \quad(\bmod 21) \equiv 169 \equiv 1 \\
13^{4} \quad(\bmod 21) \equiv 1^{2} \equiv 113^{8} \quad(\bmod 21) \equiv 1^{4} \equiv 1 \\
13^{16} \quad(\bmod 21) \equiv 1^{8} \equiv 113^{4} * 13^{16} \quad(\bmod 21) \equiv 1 * 1 \equiv 1
\end{gathered}
$$

meaning 21 is probably prime, leading into step 2
Pick different base a, say $\mathrm{a}=2$

$$
\begin{gathered}
2^{20} \quad(\bmod 21) \equiv 2^{4+16} \quad(\bmod 21) 2^{2} \quad(\bmod 21) \equiv 4 \quad(\bmod 21) \\
2^{4} \quad(\bmod 21) \equiv 4^{2} \quad(\bmod 21) \equiv 16 \quad(\bmod 21) \\
2^{8} \quad(\bmod 21) \equiv 16^{2} \quad(\bmod 21) \equiv-5^{2} \quad(\bmod 21) \equiv 24 \quad(\bmod 21) \equiv 4 \\
2^{16} \quad(\bmod 21) \equiv 4^{2} \equiv 162^{4} * 2^{16} \equiv 16 * 16 \quad(\bmod 21) \equiv 4 \quad(\bmod 21)
\end{gathered}
$$

meaning 21 isn't prime, it just has base 13 as a pseudoprime Pseudoprimes that have

Miller-Rabin Primality Test:Key idea is similar to Fermat's Primality Test because you are testing to see if a number is composite or not.

Step 1: Pick a where $2<a<n-2$ and compute $b_{o} \equiv a^{m}(\bmod n)$, if $b_{o} \equiv 1(\bmod n)$ or $1(\bmod m)$ return probably prime

Step 2: For i from 1 to k-1 where $n-1 \equiv m * 2^{k}$: compute $b_{i} \equiv\left(b_{i-1}\right)^{2}(\bmod n)$ If $b_{i} \equiv 1(\bmod n)$, return composite If $b_{i} \equiv 1(\bmod n)$, return probably prime

Step 3: Else, return composite

Ex. $n=21, a=13$ (21 base 13 psuedoprime)

$$
n-1=20=2^{2} * 5, k=2, m=5
$$

Step 1: Compute $13^{5}(\bmod 21)$

$$
\begin{gathered}
13^{5} \equiv 13^{4} * 13^{1} \\
13^{2} \equiv(-8)^{2} \quad(\bmod 21) \equiv 64 \quad(\bmod 21) \equiv 1 \quad(\bmod 21) \\
13^{4} \quad(\bmod 21)=1^{2} \quad(\bmod 21) \equiv 1 \quad(\bmod 21)
\end{gathered}
$$

returns probably prime

Step 2: Compute $b_{i}=\left(b_{o}\right)^{2}$

$$
\left(b_{o}\right)^{2} \equiv 13^{2} \quad(\bmod 21) \equiv 169 \quad(\bmod 21) \equiv 1 \quad(\bmod 21)
$$

Return composite

Factoring Trick: If $a^{2} \equiv b^{2}(\bmod n)$ and $a \not \equiv b(\bmod n)$ and $a \not \equiv-b(\bmod n)$, then n is composite and $\operatorname{gcd}(\mathrm{n}, \mathrm{b},-\mathrm{a})$ is a non-trivial factor of a.

Ex. $n=77, a=2, b=9$

$$
\begin{gathered}
a^{2} \equiv b^{2} \quad(\bmod 77) \\
\equiv 2^{2} \equiv 9^{2} \quad(\bmod 77) \\
\equiv 4 \equiv 81 \quad(\bmod 77) \\
4 \equiv 4 \quad(\bmod 77) \\
a \neq b \quad(\bmod n) \\
4 \not \equiv 9 \quad(\bmod 77) \\
a \not \equiv-b \quad(\bmod n) \\
4 \not \equiv-9 \quad(\bmod 77)
\end{gathered}
$$

As all three checks are true, the factoring trick worked proving 77 is composite with 7 or a-b as a factor.

