Modes Of Operation

Dipesh Pokhrel

April 12, 2022

Block Cipher break up Plain-text into blocks $P_1, P_2, P_3...$ encrypt blocks one at a time. *NOTE* Use the same key everytime.

1 How do we actually encrypt all the blocks to get cipher-text blocks C_1, C_2 ?

"Obvious" answer will be Electronic Codebook (ECB).

$$C_1 \to E_k * (P_1)$$

 $C_2 \to E_k * (P_2)$

 $C_3 \rightarrow E_k * (P_3)$

This is how the hill cipher worked. $E_k(P) \to S(P \oplus k)$

1.1 Problem

It preserves patterns in the plain-text.

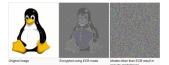


Figure 1:

2 Cipher Block Chain

Also known as CBC

Use the cipher-texts to scramble the plain-text before encryption.

Choose a random initial block called $IV = C_0$

Send this unencrypted in "cleartext"

2.1 To get more cipher-text blocks we use,

See the figure below:

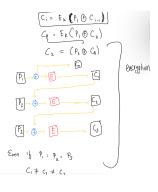


Figure 2:

2.2 Decryption. How would Bob recover the plain-texts from $C_0, C_1, C_2, C_3...$ $P_1 \oplus C_0 \rightarrow D(C_1)$

 $P_1 \to D(C_1) \oplus C_0$

In General, $P_i \to D_k(C_i) \oplus C_{i-1}$

3 Cipher Feedback (CFB)

• Works as a stream cipher start with $IV = C_0$

 $C_i \to E_k(C_{i-1}) \oplus P_i$ (Random Number Generator)

3.1 Decryption

 $P_i \to E_k(C_{i-1}) + C_i$

Never use the decryption function

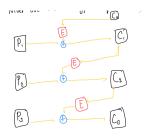


Figure 3:

4 Output Feedback (OFB)

Starts with IV $\rightarrow O_0$

 $O_i \to E_k(O_{i-1})$ This is the output blocks

$$C_i \to P_i \oplus O_i$$

4.1 Advantages

All of the output blocks can be precomputed before knowing the plain-texts.

4.2 Decryption

 $P_i \to C_i \oplus O_i$

** Like One time pad where O_i is the **key**

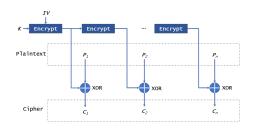


Figure 4:

5 Counter (CTR)

Start with IV = X_0 $X_i \rightarrow X_{i-1} + 1$ (increment by 1)

 $C_i \to P_i \oplus E_k(X_i) \to Ciphertext$

In practice right now must websites uses GCM Galois Counter Mode. This is Counter (CTR) + "Authentication"

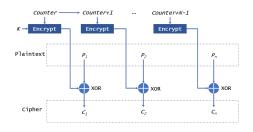


Figure 5:

REFRENCES