
MATH 314 Spirng 2020 - Class Notes

5/6/2019

Scribe: Matthew Clark

Summary: In todays class we talked about hash functions. This con-
sisted of breifly going over why they are used and and how they worked. We
then went over the discrete log hash and the process of using it

Notes: Include detailed notes from the lecture or class activities. Format
your notes nicely using latex such as

• Last class: discussed digital signatures. These gave us a way to produce
a signature that could be produced by alice (requreis her private key)

• Also depends on the message m, but isnt as quite tied to message as it
is as alice

• How do we sign a message that is larger than the modulus? (n-RSA)
or (q DSA)

• Dont want to break our message up into lots of pieces and sign each
piece individuality

• One solution is just to take the entire message modulo n first and sign
that.

• Unfortunately lots of messages will have the same signature m,m +
n,m + 2n) all have the same signature

• Even though only Alice can produce a valid signature for m eve could
replace M with M

′
= m + n or m + k for any k and the signature S

that alice produced for M would be valid for the messages too. S is a
valid signature for many different messages

• Any time two messages that have the same signature that is a collision.

Hash Functions

• -A hash function is a function is a function h(x) that takes in a large
input and returns a much smaller output called a digest.

• If two different inputs produce the same output that is called a collision.
Every hash function has collisions. Pigeon-hole-principle

• Goal: Make collisions hard to find —— Ex: h(x) = x(mod2)

• Digest are small h(3) = h(5) collision. This is not a good cryptographic
hash function

• Same if we take h(x) = x(mod x)

• Even if n is large and is easy to find collision:

• h(1) = h(n+1) = h(2n +1)

•

•

•

•

•

•

•

•

•

1

•

• Never going to eliminate collision

• Ideal properties of cryptographic hash function

1. Preimage resistance: given a digest it should be hard to find an
input x where h(x) = y

2. Weak collision resistance: given an input x is should be hard to
find an input x2 with h(x1) = h(x2)

3. Strong collision resistance: It should be hard to find any two in-
puts x1 and x2 with h(x1) = h(x2) and (x1 = x2)

• What is the difference between weak and strong collision resistance?

• Weak are input fixed

• Strong get to pick both messages

• SHA-1 is no longer strongly collision resistance

Discrete log hash - Probably strongly collision resistance

• Proof showing if we find a single collision we can use the collision to
solve a difficult discrete problem.

• since solving discrete log problem is hard finding any collision must also
be hard

• Setup: pick a large prime q and p where q = 2p

• Ex: p = 11 q = 23

• Find two different primitive roots (mod q): u and B

• Since they both primitive roots powers of then produce everything (mod
q)

• In particular u = Bc(mod q) for some c, but finding c is hard

• If B[x] = 1(mod q)

• X = 0(mod q-1)

• q-1 divides x

• Discrete log hash takes in inputs between 0 and p2-1 output digest
between

2

• 0 and q-1 since:

• q = p and q2 = p2

• Hash function is producing digest about square root the size of inputs

• Not arbitrary large inputs.

• How do we compute h(x)?

• - Write x in base p, x = a, p a0 —— 0 < a0, a1 < p

• Since x < p2 we know there will be two digits

• H(x) = h(a,P + a0) = ua0 ∗Ba(modq)

• This hash has lots of collision n p2 inputs 2p+1 outputs Each output
has p2/(2p + 1) = p different preimages

• Each digest has about p different collisions

• Even though there are lots of collisions finding one is really hard

• Suppose Eve manages to find one collisons to the discrete log hash.

• H(x1) = H(x2) x1 doesnt = x2

• X1 = a1p + a0 —— X2 = B1 ∗ p + B0

• Then h(x1) = h(x2) alpa0 ∗Ba1 = alpb0 ∗Bb1(mod q)

• alpa0−b0 ∗Ba1−b1 = 1(mod q)

• now we said: alp = Bc(mod q) for some c but finding c is hard (DLP)

• (Bc)a0−b0 ∗Ba1−b1 = 1(mod q)

• This exponent is divisible by (q-1)

• So c(a0 − b0) + a1 −B1 = 0(mod q-1)

• q = 2p +1 q-1 = p

• c(a0 −B0) = a1 −B1 (mod 2p)

• (mod p) we can solve this c = (b1 − a1)(a0 −B0)
−1(mod p)

• Not 0 since x1 and x2 are different

• Guess either c = 0 (mod 2) or c =1 (mod 2)

3

• Use the Chinese remainder theorem to find c(mod 2p)

• That means we found the c that makes u = bc(mod q)

• supposed to be hard

• Therefore it should be hard to any collisions to the discrete log hash

• Unfortunaley we dont us DL hash much in practice

• - Cant use arbituary large number s

• - Much slower than Sha-2 etc

• To sign a message alice want tpo use noth a digital signature s(x)
proving that it came from her and cryptographic secure hash function
h(x)

• How does she use both?

• 2 options (m, s(h(x))) or (m, h(s(m))

• Sign the hash dont hash the signature

4

