
MATH 314 Spring 2020 - Class Notes

5/4/2019

Scribe: Matthew Clark

Summary: Discuss two different mathematical tools used for verifying the identity of a
sender when receiving encrypted data, AKA digital signature. In the discussion we review
the process on how to mathematically tie a signature to an individual

Notes: Include detailed notes from the lecture or class activities. Format your notes
nicely using latex such as

• If Bob receives a message from Alice how can he tell if it is really from or Alice or just
Eve pretending to be Alice?

• Physical World: If you receive a letter from Alice, her signature at the bottom guar-
antees it is from her

• For the digital world: replace this idea using math instead

• Two things our signature is connected to:

1. It can only be produced by 1 person

2. Physically connected to the message

Today: How to mathematically the signature tie a signature to an individual known as digital signatures

Digital signatures

• Produce a number that could only have been produced by the person who owns the
signature

• Also need a way to verify that the signature is valid

• To do this we need a public/private key

• Signature function use the Sk(m) a private key to generate a signature for the message
m

• Verification function Vk(m, s)which uses the public key to test whether s is a valid
signature for the message m

• RSA digital signature - set up is exactly the same as regular RSA

• Alice finds n =pq and e where gcd(e, phi(n)) = 1

1



• Her public key is (n,e) —— secretly Alice computes d = e−1(modL(n))

• Only Alice can compute d because finding phi(n) = (p-1)(q-1) requires knowing p and
q

• Now Alice wants to send an encrypted message m to Bob along with a signature to
prove it comes from Alice

• Alice ”signs” the message me using the signature function S = Sd(m) = md(modn)

• Alice sends the message (m,s) to Bob

• Bob gets (m,s) but really isn’t sure if it comes from Alice, he needs a way of checking

• To verify s Bob uses Alice’s public key —— He computes Se(modn) —— if it equals
m(mod n) Bob accepts the signature as valid, otherwise he rejects it as forgery

• Why should we se = m(modn) if the signature is valid? —— If Alice produced s using
the private key then s = md

• so se = (md)e = med = m(modn) —— same as decryption!

• Why can’t Eve forge Alice’s signature on another message m?

• If Eve just picks any number s
′

and sends (m
′
, s

′
) to Bob then sd /= m(modn)

• To make it valid she would need to find a number s
′

where s
′e = m

′
(modn)

• The only s
′

that works is s
′

= m
′d(modn) —— the only way to compute that is to

know d and figuring out d is hard

Digital Signature Algoirthm (DSA)

• uses the discrete log problem as a one way function

• similar to el gamal

• Set up for DSA:

• Large prime p and medium prime q. Try to do the most arithmetic (mod q) fast, get
most of the security of working mod a large p

• Need q to dive p-1 —— Ex: p = 101 q = 5 —— s divides p-1 = 100

• g - primitve root(mod p)

• alp = g(p−1)/a(mod p) integer since q divides p-1

• Alice picks a secret number a 2 <= a < q − 1

2



• B = alpa(mod p)

• Alice public key is all four numbers (p,q,alp,B)

• Alice wants to send a message M with a DSA signature that proves it her message

• 1st Alice a ephemeral key k: 2 < k < q − 1

• r = (skmodp)(modq) —— s = k−1(m + ar)(modq) —— (r,s) is Alices signature

• She sends (m(r,s)) to bob

• bob wants to verify this signature —— U1 = s−1(m)(modq) —— U2 = s−1(r)(modp)

• V = (alpu1 ∗ bu2(modp))(modq)

• if V = r he accepts the signature as valid, otherwise reject it

• Why should V = r(mod q)???

• s = k−1(m +ar)(mod q)

• k = s−1(m + ar)(mod q)

3


