MATH 314 Spring 2020 - Class Notes

5/4/2019
Scribe: Matthew Clark
Summary: Discuss two different mathematical tools used for verifying the identity of a sender when receiving encrypted data, AKA digital signature. In the discussion we review the process on how to mathematically tie a signature to an individual

Notes: Include detailed notes from the lecture or class activities. Format your notes nicely using latex such as

- If Bob receives a message from Alice how can he tell if it is really from or Alice or just Eve pretending to be Alice?
- Physical World: If you receive a letter from Alice, her signature at the bottom guarantees it is from her
- For the digital world: replace this idea using math instead
- Two things our signature is connected to:

1. It can only be produced by 1 person
2. Physically connected to the message

Today: How to mathematically the signature tie a signature to an individual known as digital signatu

$\underline{\text { Digital signatures }}$

- Produce a number that could only have been produced by the person who owns the signature
- Also need a way to verify that the signature is valid
- To do this we need a public/private key
- Signature function use the $S_{k}(m)$ a private key to generate a signature for the message m
- Verification function $V_{k}(m, s)$ which uses the public key to test whether s is a valid signature for the message m
- RSA digital signature - set up is exactly the same as regular RSA
- Alice finds $\mathrm{n}=\mathrm{pq}$ and e where $\operatorname{gcd}(\mathrm{e}, \operatorname{phi}(\mathrm{n}))=1$
- Her public key is (n, e) - secretly Alice computes $d=e^{-1}(\bmod L(n))$
- Only Alice can compute d because finding phi $(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)$ requires knowing p and q
- Now Alice wants to send an encrypted message m to Bob along with a signature to prove it comes from Alice
- Alice "signs" the message me using the signature function $S=S_{d}(m)=m^{d}(\bmod n)$
- Alice sends the message (m, s) to Bob
- Bob gets (m, s) but really isn't sure if it comes from Alice, he needs a way of checking
- To verify s Bob uses Alice's public key —— He computes $S^{e}(\operatorname{modn})$ —— if it equals $\mathrm{m}(\bmod \mathrm{n})$ Bob accepts the signature as valid, otherwise he rejects it as forgery
- Why should we $s^{e}=m(\bmod n)$ if the signature is valid? - If Alice produced susing the private key then $s=m^{d}$
- so $s^{e}=\left(m^{d}\right)^{e}=m^{e d}=m(\bmod n)-$ same as decryption!
- Why can't Eve forge Alice's signature on another message m?
- If Eve just picks any number s^{\prime} and sends $\left(m^{\prime}, s^{\prime}\right)$ to Bob then $s^{d} /=m(\bmod n)$
- To make it valid she would need to find a number s^{\prime} where $s^{\prime e}=m^{\prime}(\bmod n)$
- The only s^{\prime} that works is $s^{\prime}=m^{\prime d}(\bmod n)$ _ the only way to compute that is to know d and figuring out d is hard

Digital Signature Algoirthm (DSA)

- uses the discrete log problem as a one way function
- similar to el gamal
- Set up for DSA:
- Large prime p and medium prime q . Try to do the most arithmetic (mod q) fast, get most of the security of working mod a large p
- Need q to dive p-1 —— Ex: $\mathrm{p}=101 \mathrm{q}=5-\mathrm{s}$ divides $\mathrm{p}-1=100$
- g - primitve $\operatorname{root}(\bmod \mathrm{p})$
- alp $=g^{(p-1) / a}(\bmod \mathrm{p})$ integer since q divides $\mathrm{p}-1$
- Alice picks a secret number a $2<=a<q-1$
- $B=a l p^{a}(\bmod \mathrm{p})$
- Alice public key is all four numbers ($\mathrm{p}, \mathrm{q}, \mathrm{alp}, \mathrm{B}$)
- Alice wants to send a message M with a DSA signature that proves it her message
- 1st Alice a ephemeral key k: $2<k<q-1$
- $r=\left(s^{k} \bmod p\right)(\bmod q)-s=k^{-1}(m+a r)(\bmod q)-(r, s)$ is Alices signature
- She sends $(\mathrm{m}(\mathrm{r}, \mathrm{s}))$ to bob
- bob wants to verify this signature - $U_{1}=s^{-1}(m)(\operatorname{modq})-U_{2}=s^{-1}(r)(\bmod p)$
- $V=\left(a l p^{u_{1}} * b^{u_{2}}(\bmod p)\right)(\bmod q)$
- if $\mathrm{V}=\mathrm{r}$ he accepts the signature as valid, otherwise reject it
- Why should $\mathrm{V}=\mathrm{r}(\bmod \mathrm{q})$???
- $s=k^{-1}(\mathrm{~m}+\operatorname{ar})(\bmod \mathrm{q})$
- $k=s^{-1}(\mathrm{~m}+\operatorname{ar})(\bmod \mathrm{q})$

