
Dixon’s Factorization Algorithm
Kobe Luong

April 25, 2020

Attacking RSA

• The attacker needs to factor n=pq, with p and q being prime numbers, in
order to find the decryption exponent.

• There is no known "easy" or "fast" way to prime-factorize.

• You can try the "naive" way, which would be to divide n by all numbers
up to n1/2.

– The worst-case time-complexity of this would be O(n1/2).
– This may not look bad, but n is the amount of bits the computer has

to write down.
– This means n=2x, so O(n1/2) = O(22/x) = O(ec∗x), which is expo-

nential time-complexity and c is log2(2)/2.

• There is another algorithm for prime factorization using a factoring trick.

– Find two numbers x and y where x 6≡ ±y but x2 ≡ y2 (mod n),
1. Pick random values of x randomly in n1/2 < x < n.
2. If (x2 (mod n))1/2 is an intger, call it y.
3. Then y2 ≡ ((xc (mod n) )1/2)2 ≡ x2 (mod n).

Example: Try to factor n=91

1. Try x=10.

2. 102 ≡ 100 ≡ 9 (mod 91).

3. So 102 ≡ 32 (mod 91).

4. So gcd(91, 10-3) = 7 is a factor of 91.

• The chance of randomly choosing a perfect square between 1 and n is
about 1/n1/2.

• If the probability of success is p, then the expected number of trials un-
til success is 1/p. This means that we expect n1/2 trials before success
because 1/(1/n1/2) = n1/2.

1



• This is simply the expected number of tries before success, meaning that
the worst-case is at least as high as this average-case. The average-case
time-complexity of this algorithm is Θ(ec∗x). This is exactly the same as
trial division.

Dixon’s Factorization Algorithm

• Use the same strategy, but don’t give up on x just because it didn’t produce
a perfect square.

1. You want to factor n.
2. Pick a bound, "B." This is a bound on the size of the largest prime

factor of a number.
3. Reject numbers whose largest prime factor is bigger than "B."

Example: B=10

• 30 = 2*3*5

• But 34 = 2*17 is not OK because 17>10

• "Fastest" B is approximately e(ln(n)ln(ln(n)))1/2 , with "n" being the number
of primes less than or equal to B. For example, B = 10 and the primes are
2, 3, 5, and 7. This means n=4.

Dixon’s Algorithm

1. Pick values n1/2 < a < n if the largest prime factor of b ≡ a2 (mod n) is
less than B then we keep a(put it in a list). Repeat until you have n+1
different values of "a" that work.

2. • Write down "a" matrix columns that correspond to prime numbers
smaller than B.

• Rows correspond to each of our "a" values.
• For each a; we record the prime factorization of bi ≡ (a2

i ) (mod n)
by writing down how many times each prime divides.

Example

• n = 91, B = 10(2, 3, 5, 7), a = 11
• b = 112 ≡ 30 (mod 91)
• 30 = 2*3*5

• 2 3 5 7[
1 1 1 0

]-> "n+1" rows, 11 -> 30

"n" columns
• Linear Algebra tells us that some combination of rows can be added
together to get all even entries.

2



3. Find some such combination of rows

• Let x be the product of the "a" values associated to these rows.
• Let Y be the product of the b-values associated to these rows.
• Exponents on the primes in Y are going to be the numbers we get
when adding the rows together. All of these numbers are even.

• Y is a perfect square!
• Let y=Y 1/2 then x2=(a1 ∗ a2...ak)2 ≡ (b1 ∗ b2...bk)2

• Found x and y where x2 ≡ y2 (mod n)
• Most of the time n 6≡ ± y (mod n)
• Then we use the factoring trick to factor n.

Example

• Use Dixon’s Algorithm to factor n=629.

• B=12.

• Primes less than 12 are 2, 3, 5, 7, 11.

• N=5

1. Pick values of "a" between 6291/2 < a < 629 and compute b ≡ a2

(mod n). Check if the largest prime factor of the largest of b is less
than B.

2. Write out Matrix
2 3 5 7 11

59
⌈
4 1 0 1 0

⌉
62

⌈
1 0 1 1 0

⌉
73

⌈
0 3 0 0 1

⌉
80

⌈
1 0 1 0 1

⌉
87

⌈
0 1 0 1 0

⌉
94

⌈
1 1 1 0 0

⌉
3. Find rows in Matrix we can add to get all even entries

◦ x = 73 * 80 * 94
◦ Y = 22 ∗ 34 ∗ 52 ∗ 112

◦ y = y1/2 = 21 ∗ 32 ∗ 51 ∗ 111

◦ x (mod 629), -y (mod 629)
◦ (472, 268)
◦ x2 (mod 629), y2 (mod 629)
◦ gcd(629, x-y) = 37
◦ 629/37 = 17

• The average-case time complexity of this algorithm is Θ(e(ln(n)ln(ln(n)))1/2)

3


