Dixon's Factorization Algorithm

Kobe Luong

April 25, 2020

Attacking RSA

- The attacker needs to factor $\mathrm{n}=\mathrm{pq}$, with p and q being prime numbers, in order to find the decryption exponent.
- There is no known "easy" or "fast" way to prime-factorize.
- You can try the "naive" way, which would be to divide n by all numbers up to $n^{1 / 2}$.
- The worst-case time-complexity of this would be $\mathrm{O}\left(n^{1 / 2}\right)$.
- This may not look bad, but n is the amount of bits the computer has to write down.
- This means $\mathrm{n}=2^{x}$, so $\mathrm{O}\left(n^{1 / 2}\right)=\mathrm{O}\left(2^{2 / x}\right)=\mathrm{O}\left(e^{c * x}\right)$, which is exponential time-complexity and c is $\log _{2}(2) / 2$.
- There is another algorithm for prime factorization using a factoring trick.
- Find two numbers x and y where $\mathrm{x} \not \equiv \pm y$ but $x^{2} \equiv y^{2}(\bmod \mathrm{n})$,

1. Pick random values of x randomly in $n^{1 / 2}<\mathrm{x}<\mathrm{n}$.
2. If $\left(x^{2}(\bmod n)\right)^{1 / 2}$ is an intger, call it y .
3. Then $y^{2} \equiv\left(\left(x^{c}(\bmod n)\right)^{1 / 2}\right)^{2} \equiv x^{2}(\bmod \mathrm{n})$.

Example: Try to factor $\mathrm{n}=91$

1. Try $x=10$.
2. $10^{2} \equiv 100 \equiv 9(\bmod 91)$.
3. So $10^{2} \equiv 3^{2}(\bmod 91)$.
4. $\operatorname{So} \operatorname{gcd}(91,10-3)=7$ is a factor of 91 .

- The chance of randomly choosing a perfect square between 1 and n is about $1 / n^{1 / 2}$.
- If the probability of success is p, then the expected number of trials until success is $1 / \mathrm{p}$. This means that we expect $n^{1 / 2}$ trials before success because $1 /\left(1 / n^{1 / 2}\right)=n^{1 / 2}$.
- This is simply the expected number of tries before success, meaning that the worst-case is at least as high as this average-case. The average-case time-complexity of this algorithm is $\Theta\left(e^{c * x}\right)$. This is exactly the same as trial division.

Dixon's Factorization Algorithm

- Use the same strategy, but don't give up on x just because it didn't produce a perfect square.

1. You want to factor n.
2. Pick a bound, "B." This is a bound on the size of the largest prime factor of a number.
3. Reject numbers whose largest prime factor is bigger than "B."

$$
\text { Example: } B=10
$$

- $30=2^{*} 3^{*} 5$
- But $34=2^{*} 17$ is not OK because $17>10$
- "Fastest" B is approximately $e^{(\ln (n) \ln (\ln (n)))^{1 / 2}}$, with " n " being the number of primes less than or equal to B. For example, $\mathrm{B}=10$ and the primes are $2,3,5$, and 7 . This means $\mathrm{n}=4$.

Dixon's Algorithm

1. Pick values $n^{1 / 2}<a<n$ if the largest prime factor of $b \equiv a^{2}(\bmod \mathrm{n})$ is less than B then we keep a(put it in a list). Repeat until you have $n+1$ different values of "a" that work.
2. Write down "a" matrix columns that correspond to prime numbers smaller than B.

- Rows correspond to each of our "a" values.
- For each a; we record the prime factorization of $b_{i} \equiv\left(a_{i}^{2}\right)(\bmod \mathrm{n})$ by writing down how many times each prime divides.

Example

- $\mathrm{n}=91, \mathrm{~B}=10(2,3,5,7), \mathrm{a}=11$
- $\mathrm{b}=11^{2} \equiv 30(\bmod 91)$
- $30=2^{*} 3^{*} 5$
- $\left.\begin{array}{cccc}2 & 3 & 5 & 7 \\ 1 & 1 & 1 & 0\end{array}\right]^{->}$"n+1" rows, $11->30$ "n" columns
- Linear Algebra tells us that some combination of rows can be added together to get all even entries.

3. Find some such combination of rows

- Let x be the product of the "a" values associated to these rows.
- Let Y be the product of the b-values associated to these rows.
- Exponents on the primes in Y are going to be the numbers we get when adding the rows together. All of these numbers are even.
- Y is a perfect square!
- Let $\mathrm{y}=Y^{1 / 2}$ then $x^{2}=\left(a_{1} * a_{2} \ldots a_{k}\right)^{2} \equiv\left(b_{1} * b_{2} \ldots b_{k}\right)^{2}$
- Found x and y where $x^{2} \equiv y^{2}(\bmod \mathrm{n})$
- Most of the time $n \not \equiv \pm y(\bmod n)$
- Then we use the factoring trick to factor n.

Example

- Use Dixon's Algorithm to factor $\mathrm{n}=629$.
- $\mathrm{B}=12$.
- Primes less than 12 are $2,3,5,7,11$.
- $\mathrm{N}=5$

1. Pick values of "a" between $629^{1 / 2}<a<629$ and compute $\mathrm{b} \equiv a^{2}$ $(\bmod n)$. Check if the largest prime factor of the largest of b is less than B.
2. Write out Matrix
$\left.\begin{array}{ccccc}2 & 3 & 5 & 7 & 11 \\ 59 \\ 62 & {\left[\begin{array}{cccc}4 & 1 & 0 & 1\end{array}\right.} & 0 \\ \underline{\mathbf{7 3}} & 0 & 1 & 1 & 0 \\ \underline{\mathbf{8 0}} & \underline{\mathbf{0}} & \underline{\mathbf{3}} & \underline{\mathbf{0}} & \underline{\mathbf{0}} \\ \mathbf{8} & \underline{\mathbf{1}} \\ \underline{\mathbf{9 4}} & \underline{\mathbf{0}} & \underline{\mathbf{1}} & \underline{\mathbf{0}} & \underline{\mathbf{1}} \\ \underline{0} & 1 & 0 & 1 & 0 \\ \underline{\mathbf{1}} & \underline{\mathbf{1}} & \underline{\mathbf{1}} & \underline{\mathbf{0}} & \underline{\mathbf{0}}\end{array}\right]$
3. Find rows in Matrix we can add to get all even entries

- $\mathrm{x}=73 * 80 * 94$
- $\mathrm{Y}=2^{2} * 3^{4} * 5^{2} * 11^{2}$
- $\mathrm{y}=y^{1 / 2}=2^{1} * 3^{2} * 5^{1} * 11^{1}$
- x $(\bmod 629),-y(\bmod 629)$
- $(472,268)$
- $x^{2}(\bmod 629), y^{2}(\bmod 629)$
- $\operatorname{gcd}(629, x-y)=37$
- $629 / 37=17$
- The average-case time complexity of this algorithm is $\Theta\left(e^{(\ln (n) \ln (\ln (n)))^{1 / 2}}\right)$

