Dixon's Factorization Algorithm

Kobe Luong

April 25, 2020

Attacking RSA

- The attacker needs to factor n=pq, with p and q being prime numbers, in order to find the decryption exponent.
- There is no known "easy" or "fast" way to prime-factorize.
- You can try the "naive" way, which would be to divide n by all numbers up to $n^{1/2}$.
 - The worst-case time-complexity of this would be $O(n^{1/2})$.
 - This may not look bad, but n is the amount of bits the computer has to write down.
 - This means $n=2^x$, so $O(n^{1/2}) = O(2^{2/x}) = O(e^{c*x})$, which is exponential time-complexity and c is $log_2(2)/2$.
- There is another algorithm for prime factorization using a factoring trick.
 - Find two numbers x and y where $x \not\equiv \pm y$ but $x^2 \equiv y^2 \pmod{n}$,
 - 1. Pick random values of x randomly in $n^{1/2} < x < n$.
 - 2. If $(x^2 \pmod{n})^{1/2}$ is an integr, call it y.
 - 3. Then $y^2 \equiv ((x^c \pmod{n})^{1/2})^2 \equiv x^2 \pmod{n}$.

Example: Try to factor n=91

- 1. Try x=10.
- 2. $10^2 \equiv 100 \equiv 9 \pmod{91}$.
- 3. So $10^2 \equiv 3^2 \pmod{91}$.
- 4. So gcd(91, 10-3) = 7 is a factor of 91.
- The chance of randomly choosing a perfect square between 1 and n is about $1/n^{1/2}$.
- If the probability of success is p, then the expected number of trials until success is 1/p. This means that we expect $n^{1/2}$ trials before success because $1/(1/n^{1/2}) = n^{1/2}$.

• This is simply the *expected* number of tries before success, meaning that the worst-case is at least as high as this average-case. The average-case time-complexity of this algorithm is $\Theta(e^{c*x})$. This is exactly the same as trial division.

Dixon's Factorization Algorithm

- Use the same strategy, but don't give up on x just because it didn't produce a perfect square.
 - 1. You want to factor n.
 - 2. Pick a bound, "B." This is a bound on the size of the largest prime factor of a number.
 - 3. Reject numbers whose largest prime factor is bigger than "B."

Example: B=10

- $30 = 2^*3^*5$
- But 34 = 2*17 is not OK because 17>10
- "Fastest" B is approximately $e^{(ln(n)ln(ln(n)))^{1/2}}$, with "n" being the number of primes less than or equal to B. For example, B = 10 and the primes are 2, 3, 5, and 7. This means n=4.

Dixon's Algorithm

- 1. Pick values $n^{1/2} < a < n$ if the largest prime factor of $b \equiv a^2 \pmod{n}$ is less than B then we keep a(put it in a list). Repeat until you have n+1 different values of "a" that work.
- 2. Write down "a" matrix columns that correspond to prime numbers smaller than B.
 - Rows correspond to each of our "a" values.
 - For each a; we record the prime factorization of $b_i \equiv (a_i^2) \pmod{n}$ by writing down how many times each prime divides.

Example

- n = 91, B = 10(2, 3, 5, 7), a = 11
- $b = 11^2 \equiv 30 \pmod{91}$
- $30 = 2^*3^*5$
- $\begin{bmatrix} 2 & 3 & 5 & 7 \\ [1 & 1 & 1 & 0] \end{bmatrix}$ -> "n+1" rows, 11 -> 30 "n" columns
- Linear Algebra tells us that some combination of rows can be added together to get all even entries.

- 3. Find some such combination of rows
 - Let x be the product of the "a" values associated to these rows.
 - Let Y be the product of the b-values associated to these rows.
 - Exponents on the primes in Y are going to be the numbers we get when adding the rows together. All of these numbers are even.
 - Y is a perfect square!
 - Let $y=Y^{1/2}$ then $x^2=(a_1 * a_2...a_k)^2 \equiv (b_1 * b_2...b_k)^2$
 - Found x and y where $x^2 \equiv y^2 \pmod{n}$
 - Most of the time $n \not\equiv \pm y \pmod{n}$
 - Then we use the factoring trick to factor n.

Example

- Use Dixon's Algorithm to factor n=629.
- B=12.
- Primes less than 12 are 2, 3, 5, 7, 11.
- N=5
 - 1. Pick values of "a" between $629^{1/2} < a < 629$ and compute b $\equiv a^2$ (mod n). Check if the largest prime factor of the largest of b is less than B.
 - 2. Write out Matrix

	2	3	5	7	11
59	4	1	0	1	0
62	1	0	1	1	0
$\overline{73}$	<u>0</u>	<u>3</u>	<u>0</u>	<u>0</u>	1
<u>80</u>	1	<u>0</u>	<u>1</u>	<u>0</u>	1
87	0	1	0	1	0
<u>94</u>	$\begin{bmatrix} 1 \end{bmatrix}$	<u>1</u>	<u>1</u>	<u>0</u>	$\underline{0}$

3. Find rows in Matrix we can add to get all even entries

• x = 73 * 80 * 94• $Y = 2^2 * 3^4 * 5^2 * 11^2$ • $y = y^{1/2} = 2^1 * 3^2 * 5^1 * 11^1$ • $x \pmod{629}$, - $y \pmod{629}$ • (472, 268)• $x^2 \pmod{629}$, $y^2 \pmod{629}$ • gcd(629, x-y) = 37

- $\circ \ 629/37 = 17$
- The average-case time complexity of this algorithm is $\Theta(e^{(ln(n)ln(ln(n)))^{1/2}})$