Class Notes 4/13

Logan Smith

May 8, 2020

RSA: Pulbic Key Cryptography (Alice has public key. She tells everyone, people send her message that only she can decrypt)
she picks 2 large random prime $\mathrm{p} q$
$\mathrm{n}=\mathrm{pq}$
she picls an e
$\operatorname{gcd}(\mathrm{e},(\mathrm{p}-1)(\mathrm{q}-1))=1$
her public key is (n, e)
alice computes $\varphi(n)=(p-1)(q-1)$ andusesthistofind
$d \equiv e^{-1}(\bmod \varphi(n))$
Using Euclid's Algorithm
Bob can send Alice a message $\mathrm{m}<\mathrm{n}$
He computes $\mathrm{c} \equiv m^{e}(\bmod \varphi(n))$
TO decrypt Alice computes $\mathrm{c}^{d}(\bmod n)$
sinceed $=1(\bmod \varphi(n))$
$e d=1+k \varphi(n)$
$s o c^{d} \equiv\left(m^{e}\right)^{d}=m^{e d}$
$\equiv m^{1+k \varphi(n)} \equiv m \cdot\left(m^{\varphi(n)}\right)^{k}(\bmod n) \equiv m(\bmod n)$
soalicecandecrypt
If eve knows n why can't she use this to decrypt bob's message?
The decryption function is:
$\mathrm{D}(\mathrm{y})=\mathrm{y}^{d}(\bmod n)$
Evehastofindd
$d \equiv e^{-1}(\bmod \varphi(n))$
Eve cannot compute this without knowing $\varphi(n)$. So eve need to know $\varphi(n)$. If she can factor $\mathrm{n}=\mathrm{pq}$, then eve could break RSA (find d) but factoring is hard(no one knows a fast way to do it for big n).

Maybe she could find $\varphi(n)$ some other way?
Claim: Computing $\varphi(n)$ is equally as hard
If you found a way to compute $\varphi(n)$ you could use it to find p and q (factor n). How do you do it?

Suppose you manage to learn $\varphi(n)$
know $\varphi(n)=(p-1)(q-1)=p q-p-q+1$
$n-\varphi(n)+1=p+q$
Use quadratic formula to find p q:
$x^{2}-(n-\varphi(n)+1)+n=0$
$x^{2}-(p+q)+(p q)=0$
This factors as
$p, q=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{n-\varphi(n)+1+\sqrt{(n-\varphi(n)+1)^{2}-4(1)(n)}}{2(1)}$
Since factoring is hard it is hard find $\varphi(n)$ or d
Test if n is prime. Trial division test if n is divisible by any number \sqrt{n} (really slow)

Fermat primality test: Fermats little theorem: If n is prime and $1 \leq a<n$ then $a^{n-1} \equiv 1(\bmod n)$ steps: (repeat 10 times) pick a random $a<n$ if $a^{n-1} \equiv$ $1(\bmod n)$
return composite
else return "probably prime"
drawbacks:
lots of psuedoprimes(false primes)
carmichael numbers (fermat's test always lies)
too many mistakes for RSA
Solovay Strassen Test:
Use jacobi symbols $(a, n)=\left\{1\right.$ if n is prime and $a \equiv x^{2}(\bmod n)$
-1 if n is prime and $a \not \equiv x^{2}(\bmod n)$
If n isnt prime the symbol doesn't tell us if a is a quadratic residue
Theorem(Euler)
If n is prime and $a \leq a<n$ then $(a, n) \equiv a^{\frac{n-1}{2}}(\bmod n)$
steps: repeat 10 times pick a random $\mathrm{a}<\mathrm{n}$
if $(a, n) \not \equiv a^{\frac{n-1}{2}}(\bmod n)$ return composite else return probably prime
why is solovay strassen better?
if n is composite, there is always some a which shows this using solovay strassen no carmichael 's in fact if n is composite then atleast $1 / 2$ of the choices for a tell it is composite
if we do this test N times the probability of getting probably prime everytime when the number is composite is at most $\frac{1}{2}^{n}$

