MATH 314 Fall 2019 - Class Notes

4/13/2020
Scribe: Daniella Diaz
Summary: In class we learned about RSA.
Notes: Alice picks two random primes p and q. She computes $n=p q$ and picks an e where $\operatorname{gcd}(e,(p-1)(q-1))=1$. Alice tells everyone (n, e), then secretly uses p and q to compute $e(n)=(p-1)(q-1)$. She then computes $d=e^{-1}(\bmod e(n))$ by using Euclid's Algorithm. Once she computes d, she can forgot about p and q.
d is now Alice's secret decryption key.
To send a message $m<n$, Bob uses Alice's key (n, e) to computer $C=M^{e}(\bmod n)$. k sends this to Alice...

To Decrypt: Alice computes, $C^{d}\left(M^{e d}\right)=M^{e d}(\bmod n)$
Since, $\quad d e=1(\operatorname{mode}(n))$
$d e=1+k e(n)$

$$
\text { so, } \quad \begin{aligned}
C^{d} & =m^{1-k e(n)} \\
& =m\left(m^{e(n)}\right)^{k}=1 \text { by Euler Theorem } \\
& =m(\bmod n)
\end{aligned}
$$

Decryption Function: $\quad D(y)=y^{d}(\bmod n)$
Since, $\quad d=e^{-1}(\operatorname{mode}(n))$, Eve needs to find $e(n)$ so factor $n!$ Factoring n is equally hard as computing e(n)

$$
\text { Since, } \quad \begin{aligned}
e(n) & =(p-1)(q-1) \\
& =p q-p-q+1 \\
n-e(n)+1 & =(p q)-((p q)-p-q+\chi)+\ngtr 1 \\
& =p+q \\
n & =p q
\end{aligned}
$$

$$
\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\downarrow & \downarrow & \downarrow \\
\mathrm{x}^{2}-(n-e(n)+1) x+n \\
= & x^{2}-(p+q) x+p q=(x-p)(x-q)
\end{array}
$$

Now, Quadratic Formula: $p, q=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& =\frac{(n-e(n)+1) \pm \sqrt{(n-e(n)+1)^{2}-4 n}}{2} \\
& \therefore \text { Computing } \mathrm{e}(\mathrm{n}) \text { allows us to factor } \mathrm{n}=99
\end{aligned}
$$

Trial Division: \sqrt{n}
If n has x bits then the trial division $n \approx 2^{x}$
This is $2^{x / 2}$ steps too slow!

Use Fermat's Primality Test: If n is prime then, $a^{n-1}=1(\bmod n)$ for all a not divisible by n but,
-Lots of false positives
-Carmichael numbers
Solovay-Strasser Primatlity: using Jacobi Symbols,

$$
\left(\frac{a}{n}\right)= \begin{cases}1, & \text { if } n \text { is prime and } a=x^{2}(\bmod n) \tag{1}\\ -1, & \text { if } n \text { is prime and } a \neq x^{2}(\bmod n)\end{cases}
$$

Theorem (Euler) if n is prime and α is not divisible by n then $\left(\frac{a}{n}\right)=a^{(n-1) / 2}(\bmod n)$

$$
\begin{aligned}
& \text { Steps: } \\
& \hline \text { Pick random } a<n \\
& \text { if }\left(\frac{a}{n}\right) \neq \boldsymbol{q}^{(n-1) / 2}(\bmod n) \\
& \quad \text { return "composite" } \\
& \text { repeat } 10 \text { times } \\
& \quad \text { return "probably prime" }
\end{aligned}
$$

