Mid-Term Review

Camryn Truban

March 9th, 2020

Mssion 4 Problem 4: Find the last two digits of $4^{3^{210}}$
Given that we are looking for the last two digits we will me using (mod100) $4^{3^{210}}(\bmod 100)$
$3^{210}(\bmod \varphi 100)$
$\varphi 100=40$
$3^{210}(\bmod 40)=3$
$3^{1}(\bmod 40)=9 \quad 4^{1}(\bmod 100)=4$
$3^{2}(\bmod 40)=9 \quad 4^{2}(\bmod 100)=16$
$3^{4}(\bmod 40)=27 \quad 4^{4}(\bmod 100)=54$
$3^{8}(\bmod 40)=1 \quad 4^{8}(\bmod 100)=36$
$3^{16}(\bmod 40)=1$
$3^{32}(\bmod 40)=1$
$3^{64}(\bmod 40)=1$
$3^{128}(\bmod 40)=1$
$210=128+64+16+2 \quad\left(9^{*} 1^{*} 1^{*} 1\right) \bmod 40=9$
$4^{9}(\bmod 100)=4^{*} 36(\bmod 100)=44$
$4^{3^{210}}(\bmod 100)=44$
Mssion 4 Problem 3: Write down all of the 8 elements of field of 8 using the irreducible polynomial $x^{3}+x+1$
Multiply each element by $x^{2}+1$

$$
\left|\begin{array}{l|l|}
* & x^{2}+1 \\
0 & 0 \\
1 & x^{2}+1 \\
\mathrm{x} & \mathrm{x} \\
\mathrm{x}+1 & x^{2}+x+1 \\
x^{2} & \mathrm{x} \\
x^{2}+1 & x^{2}+x+1 \\
x^{2}+x & \mathrm{x}+1 \\
x^{2}+x+1 & x^{2}+x
\end{array}\right|
$$

Missiong 5 Problem 4: Use Euclid's algorithm to find the inverse of $\mathbf{f}(\mathbf{x})=x^{2}$ inthe field F8 with irreducible polynomial $x^{3}+x+1$ $\operatorname{gcd}\left(x^{3}+x+1, x^{2}\right)$
$x^{3}+x+1=x^{2}(x)+(x+1)$
$x^{2}=(\mathrm{x}+1)(\mathrm{x}+1)+1$
$1=x^{2}-(x+1)(x+1)$
$\mathrm{x}+1=\left(x^{3}+x+1\right)-\mathrm{x}\left(x^{2}\right)$
$1=x^{2}-(x+1)\left(\left(x^{3}+x+1\right)+x\left(x^{2}\right)\right)$
$\left(x^{2}+x\right)\left(x^{2}\right)$
$1=\left(x^{2}+x+1\right)\left(x^{2}\right)\left(\bmod x^{3}+x+1\right)$
$\left(x^{2}\right)^{-1}=x^{2}+x+1$

DES

The worksheet provided helps us encrypt 12-bit
-It is usually more than 12 bits though
So how would we encrypt 1000-bits?
-Encrypt 12-bits at a time.
Encrypting Plaintext longer than blocksize
First Idea: Break plaintext into chunks of size of a block, encrypt each blod seperatly(Mode of Operation)

