Mid-Term Review

Camryn Truban

March 9th, 2020

Mssion 4 Problem 4: Find the last two digits of $4^{3^{210}}$

Given that we are looking for the last two digits we will me using (mod100) $4^{3^{210}} \pmod{100}$ $3^{210} \pmod{\varphi^{100}}$ $\varphi 100 = 40$ $3^{210} \pmod{40} = 3$ $3^{1}(\text{mod}40)=9$ $4^{1}(\text{mod}100)=4$ $3^2(mod40) = 9$ $4^2(mod100) = 16$ $3^4 \pmod{40} = 27 \quad 4^4 \pmod{100} = 54$ $3^{8}(mod40) = 1$ $4^8 \pmod{100} = 36$ $3^{16}(mod40) = 1$ $3^{32}(mod40) = 1$ $3^{64}(mod40) = 1$ $3^{128}(mod40) = 1$ 210 = 128 + 64 + 16 + 2 (9*1*1*1)mod40=9 $4^9 \pmod{100} = 4*36 \pmod{100} = 44$ $4^{3^{210}} \pmod{100} = 44$

Mssion 4 Problem 3: Write down all of the 8 elements of field of 8 using the irreducible polynomial $x^3 + x + 1$ Multiply each element by $x^2 + 1$

*	$x^{2} + 1$
0	0
1	$x^2 + 1$
х	x
x+1	$x^2 + x + 1$
x^2	x
$x^2 + 1$	$x^2 + x + 1$
$x^{2} + x$	x+1
$x^2 + x + 1$	$x^{2} + x$

Missiong 5 Problem 4: Use Euclid's algorithm to find the inverse of $f(x) = x^2$ in the field F8 with irreducible polynomial $x^3 + x + 1$ $gcd(x^3 + x + 1, x^2)$ $x^3 + x + 1 = x^2(x) + (x + 1)$ $x^2 = (x+1)(x+1)+1$ $1 = x^2 - (x + 1)(x + 1)$ $x+1 = (x^3 + x + 1) - x(x^2)$ $1 = x^2 - (x + 1)((x^3 + x + 1) + x(x^2))$ $(x^2 + x)(x^2)$ $1 = (x^2 + x + 1)(x^2)(modx^3 + x + 1)$ $(x^2)^{-1} = x^2 + x + 1$

DES

The worksheet provided helps us encrypt 12-bit -It is usually more than 12 bits though So how would we encrypt 1000-bits? -Encrypt 12-bits at a time. *Encrypting Plaintext longer than blocksize* First Idea: Break plaintext into chunks of size of a block, encrypt each blod seperatly(*Mode of Operation*)