Notes 2/5

Seth Graham

February 27, 2020

Summary: In today's class, we started discussing block ciphers and more specifically the Hill cipher.

Block Ciphers

- Most modern cryptosystems are block ciphers. This means that they encrypt "blocks" or a set of letter all at one time.
- This means that by changing on letter could affect the whole block of cipher text.
- Block length is an important factor.

The first real block cipher was the Hill Cipher:

- This encryption uses matrices with a fixed block length, m.
- The key is an m by $m \operatorname{matrix}(\bmod 26) *(\mathrm{k})$.

To encrypt, we take a block and write it out as a row or vector.
$\mathrm{E}(\mathrm{v})=\mathrm{vk}$
$\mathrm{v}=$ block from plaintext.
$\mathrm{k}=$ key matrix

Example:

$\mathrm{m}=2$ and the matrix key k is:

$$
k=\left[\begin{array}{cc}
10 & 3 \\
5 & 0
\end{array}\right]
$$

Say we want to encrypt the plaintext, "rows". To do this, we convert the word rows to its letter equivilant. $17,14,22,18$. Then divide them into two blocks being $(17,14)$ and $(22,18)$.
Next we follow the encryption formula and multiply the vectors by the key matrix.

$$
\begin{aligned}
& \mathrm{E}(<17,14>)=<17,14>^{*} \mathrm{k} \\
& <17^{*} 10+14^{*} 5,17^{*} 3+14^{*} 0>=<6,25>
\end{aligned}
$$

This encrypts the first block as GZ.
$\mathrm{E}(<22,18>)=<22,18>^{*} \mathrm{k}$
$<22^{*} 10+18^{*} 5,22^{*} 3+18^{*} 0>=<24,14>$
The second block encrypts to YO.
Decrypting the hill cipher:

- To decrypt it, we want to find the matrix $k^{(-1)}$, so the $\left.k * k^{(}-1\right)=I$ t (The identity matrix)
To start, we call the cipher text,w.(Important note, when multiplying matrices, order matters. If you multiply $b=a$ by a vector x, you must do $b^{*} \mathrm{x}=\mathrm{a}^{*} \mathrm{x}$ or $\mathrm{x}^{*} \mathrm{~b}=\mathrm{x}^{*} \mathrm{a}$.)
$\mathrm{w}=\mathrm{v}^{*} \mathrm{k}(\bmod 26)$, multiply by k inverse.
$w * k^{-1}=v * k * k^{-1}(\bmod 26)$, this simplifies to $w * k^{-1}=\mathrm{v}(\bmod 26)$
This means the decryption is $D(w)=w * k^{-1}(\bmod 26)$.
If $\mathrm{m}=2$ and

$$
k=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then k inverse $=(\mathrm{ad}-\mathrm{bc})^{-1} * r(\bmod 26)$

$$
r=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

If (ad-bc) does not have an inverse, then k is not a valid matrix for the hill cipher.

