MATH 314 Sptring 2020 - Hill Cipher

02/05/2020
Scribe: Andrew Noonan
Summary: This cipher encrypts blocks of letters all at once. Encryption is done by changing one letter of plaintext, which changes multiple letters of ciphertext.

Notes:

- Encryption done through the use of matrices to encrypt blocks of text. Block length m , key : m ${ }^{*} \mathrm{~m}$ matrix $(\bmod 26)$

$$
\begin{aligned}
& E(\vec{v}) \equiv \vec{v} * K \text { never } K * \vec{v} \\
& \mathrm{E}(\text { rows }) \\
& \mathrm{E}(<17,14>)=<17,14>*\left[\begin{array}{cc}
10 & 3 \\
5 & 0
\end{array}\right]=<6,25>(\bmod 26) \\
& \mathrm{E}(<22,18>)=<22,18>*\left[\begin{array}{cc}
10 & 3 \\
5 & 0
\end{array}\right]=<24,14>(\bmod 26)
\end{aligned}
$$

so rows becomes GZYO

- Decryption is done by multiplying the ciphertext with k^{-1}

$$
\begin{aligned}
& \vec{V} * I=\vec{V} \\
& \mathrm{D}(\vec{w})=\vec{w} * k^{-1}(\bmod 26) \\
& k^{-1}=(a d-c b)^{-1} *\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& \mathrm{k}=\left[\begin{array}{cc}
10 & 3 \\
5 & 0
\end{array}\right] \\
& k^{-1}=(10(0)-3(5))^{-1} *\left[\begin{array}{cc}
0 & -3 \\
-5 & -10
\end{array}\right]=11^{-1} *\left[\begin{array}{cc}
0 & 23 \\
21 & 10
\end{array}\right]=19 *\left[\begin{array}{cc}
0 & 23 \\
21 & 10
\end{array}\right]=
\end{aligned}
$$

$$
\left[\begin{array}{cc}
0 & 21 \\
9 & 8
\end{array}\right](\bmod 26)
$$

- Attacking the Hill Cipher

Ciphertext only
Bruteforce $\left(26^{m^{2}}\right)$. Feasable only for small matraces. If m is less than 8 , then the hill cipher is secure against CT only attacks

Known Plaintext: as long as we know at least m blocks then we can break the cipher.
see examples
Chosen Plaintext
use vectors $\langle 1,0\rangle$ and $\langle 0,1\rangle$ to read off $\langle a, b\rangle$ and $\langle c, d\rangle$
Examples: Known plaintext attack.

- $\mathrm{M}=2$, bool encrypts to CNDR

$$
\begin{aligned}
& \mathrm{E}(<1,14>)=<1,14>*\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=<2,13> \\
& \mathrm{E}(<14,11>)=<14,11>*\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]<3,17>
\end{aligned}
$$

Combine vectors and make the encryption function
$\left[\begin{array}{cc}1 & 14 \\ 14 & 11\end{array}\right] * k=\left[\begin{array}{ll}2 & 13 \\ 3 & 17\end{array}\right]$, We need to find the inverse of the plaintext matrix so we can "divide" both sides
$\left[\begin{array}{cc}1 & 14 \\ 14 & 11\end{array}\right]^{-1}=(1 * 11-14 * 14)^{-1} *\left[\begin{array}{cc}11 & -14 \\ -14 & 1\end{array}\right]=23^{-1} *\left[\begin{array}{cc}11 & 12 \\ 12 & 1\end{array}\right]=17 *\left[\begin{array}{cc}1 & 12 \\ 12 & 1\end{array}\right]=$
$\left[\begin{array}{cc}5 & 22 \\ 22 & 17\end{array}\right]$, This is the inverse of the plaintext matrix

$$
\mathrm{k}=\left[\begin{array}{cc}
5 & 22 \\
22 & 17
\end{array}\right] *\left[\begin{array}{ll}
2 & 13 \\
3 & 17
\end{array}\right] \equiv\left[\begin{array}{cc}
24 & 13 \\
17 & 3
\end{array}\right]
$$

- So, $\left[\begin{array}{cc}1 & 14 \\ 14 & 11\end{array}\right] *\left[\begin{array}{cc}24 & 13 \\ 17 & 3\end{array}\right] \equiv\left[\begin{array}{ll}2 & 13 \\ 3 & 17\end{array}\right](\bmod 26)$

