Finite Fields

Temi Owoeye

March 3, 2020

Finite Fields can be considered by taking integers mod a prime number.
$F_{p} \rightarrow$ polynomials F_{2} modulo an irreducable polynomial of degree n give the field.

Irreducible Polynomial \rightarrow a polynomial evenly divisible only by itself and 1

GOAL : Find $\mathrm{F}_{4}=F_{2^{2}}$
We need an irreducible polynomial in $F_{2}[x]$ of degree 2.
CLAIM : $x^{2}+x+1$ is irreducible in $F_{2}[x]$
What smaller polynomials are there?

- x
- $x+1$

Check that $x^{2}+x+1$ is not divisible by either

- $x) \frac{x+1}{x^{2}+x+1}$
$-x^{2}$
x
$-x$
1
- $x+1) \frac{x}{x^{2}+x+1}$
$-x^{2}-x$

Because there are remainders, $x^{2}+x+1$ is irreducible. So the polynomials $\left(\bmod x^{2}+x+1\right)$ form a field

Addition table for \mathbf{F}_{4}

+	0	1	x	$\mathrm{x}+1$
0	0	1	x	$\mathrm{x}+1$
1	1	0	$\mathrm{x}+1$	x
x	x	$\mathrm{x}+1$	0	1
$\mathrm{x}+1$	$\mathrm{x}+1$	x	1	0

Multiplication table table for \mathbf{F}_{4}

$*$	0	1	x	$\mathrm{x}+1$
0	0	0	0	0
1	0	1	x	$\mathrm{x}+1$
x	0	x	$\mathrm{x}+1$	1
$\mathrm{x}+1$	0	$\mathrm{x}+1$	1	x

$x^{-1} \equiv x+1\left(\bmod x^{2}+x+1\right)$

How do we find the inverse of polynomials without computing the whole multiplication table?
$\underline{\text { Example Compute }\left(x^{3}+x_{-1}\right)\left(\bmod x^{4}+x+1\right)}$
useEuclid's Algorithm

1) Compute the gcd $\left(x^{3}+x, x^{4}+x+1\right)$

$$
\left.x^{3}+x\right) \begin{gathered}
\frac{x}{x^{4}+x+1} \\
\frac{-x^{4}-x^{2}}{-x^{2}}+x+1
\end{gathered}
$$

remainder $=x^{2}+x+1 \quad$ quotient $=\mathbf{x}$
$\left(\mathrm{x}^{4}+x+1\right)=x\left(x^{3}+x\right)+\left(x^{2}+x+1\right)$
$\left(\mathrm{x}^{3}+x\right)=(x+1)\left(x^{2}+x+1\right)+(x+1)$
$\left(\mathrm{x}^{2}+x+1\right)=x(x+1)+1$
Now work backwards - Euclid's Algorithm
$1=1\left(\mathrm{x}^{2}+x+1\right)+x(x+1)$
$\mathrm{x}+1=\left(\mathrm{x}^{3}+x\right)+(x+1)\left(x^{2}+x+1\right)$
2) Substitute the equation
$1=1\left(\mathrm{x}^{2}+x+1\right)+x\left(\left(x^{3}+x\right)+(x+1)\left(x^{2}+x+1\right)\right)$
3) Distribute the x
$1=1\left(x^{2}+x+1\right)+\mathrm{x}\left(\mathrm{x}^{3}+x\right)+\left(\mathrm{x}^{2}+x\right)\left(x^{2}+x+1\right)$
Combine the terms in $1\left(x^{2}+x+1\right)$ and $\left(x^{2}+x\right)\left(x^{2}+x+1\right)$ and add their coefficients
$1=x\left(x^{3}+x\right)+\left(x^{2}+x+1\right)\left(x^{2}+x+1\right)$
Go back to computing the inverse
$\left(x^{3}+x\right)^{-1} \equiv \mathrm{x}^{3}+x^{2}\left(\bmod x^{2}+x+1\right)$
4) Check your solution
$\left(x^{3}+x^{2}\right)\left(x^{3}+x\right)=x^{6}+x^{5}+x^{4}+x^{3}\left(\bmod x^{4}+x+1\right)$
$\left.x^{4}+x+1\right) \begin{array}{rr} & x^{2} \\ +x^{6}+x^{4}+x^{3} \\ x^{6}+x^{4} & -x^{3}\end{array}-x^{2}$

$-x^{5}$	$-x^{2}$	$-x$
	x^{4}	$-2 x^{2}$

$-x^{4}$	$-x-1$
$-2 x^{2}-2 x-1$	

