Finite Fields

Temi Owoeye

March 3, 2020

Finite Fields can be considered by taking integers mod a prime number.

 $F_p \rightarrow$ polynomials F_2 modulo an irreducable polynomial of degree n give the field.

Irreducible Polynomial \rightarrow a polynomial evenly divisible only by itself and 1

 $\underline{\mathbf{GOAL}}: \text{ Find } \mathbf{F}_4 = F_{2^2}$

We need an irreducible polynomial in $F_2[x]$ of degree 2.

 $\underline{\mathbf{CLAIM}}$: $x^2 + x + 1$ is irreducible in $F_2[x]$

What smaller polynomials are there?

- x
- *x* + 1

Check that $x^2 + x + 1$ is not divisible by either

•
$$\frac{x+1}{x^2+x+1}$$

$$\frac{-x^2}{x}$$

$$\frac{-x}{1}$$
•
$$\frac{x}{x+1}\frac{x^2+x+1}{-x^2-x}$$
1

Because there are remainders, $x^2 + x + 1$ is irreducible. So the polynomials (mod $x^2 + x + 1$) form a field

Addition table for \mathbf{F}_4

+	0	1	х	x+1
0	0	1	х	x+1
1	1	0	x+1	х
x	х	x+1	0	1
x+1	x+1	х	1	0

Multiplication table table for \mathbf{F}_4

*	0	1	x	x+1
0	0	0	0	0
1	0	1	х	x+1
х	0	х	x+1	1
x+1	0	x+1	1	х

$$x^{-1} \equiv x + 1 \pmod{x^2 + x + 1}$$

How do we find the inverse of polynomials without computing the whole multiplication table?

Example Compute $(x^3 + x_{-1}) \pmod{x^4 + x + 1}$

* use Euclid's Algorithm *

1) Compute the gcd $(x^3 + x, x^4 + x + 1)$

$$x^{3} + x) \underbrace{\frac{x}{x^{4} + x + 1}}_{-x^{4} - x^{2}}$$

remainder = $x^2 + x + 1$ quotient = x

$$(x^{4} + x + 1) = x(x^{3} + x) + (x^{2} + x + 1)$$
$$(x^{3} + x) = (x + 1)(x^{2} + x + 1) + (x + 1)$$
$$(x^{2} + x + 1) = x(x + 1) + 1$$

Now work backwards - Euclid's Algorithm

 $1 = 1(x^{2} + x + 1) + x(x + 1)$ $x+1 = (x^{3} + x) + (x + 1)(x^{2} + x + 1)$

2) Substitute the equation

 $1 = 1 (x^{2} + x + 1) + x((x^{3} + x) + (x + 1)(x^{2} + x + 1))$

3) Distribute the x

$$1 = 1(x^{2} + x + 1) + x(x^{3} + x) + (x^{2} + x)(x^{2} + x + 1)$$

Combine the terms in $1(x^2+x+1)$ and $(x^2+x)(x^2+x+1)$ and add their coefficients $\!\!\!$

$$1 = x(x^{3} + x) + (x^{2} + x + 1)(x^{2} + x + 1)$$

Go back to computing the inverse

 $(x^3 + x)^{-1} \equiv x^3 + x^2 \pmod{x^2 + x + 1}$

4) Check your solution

$$(x^3 + x^2)(x^3 + x) = x^6 + x^5 + x^4 + x^3 \pmod{x^4 + x + 1}$$

$$\begin{array}{r} x^{2} + x + 1 \\ \hline x^{6} + x^{5} + x^{4} + x^{3} \\ \hline -x^{6} & -x^{3} & -x^{2} \\ \hline x^{5} + x^{4} & -x^{2} \\ \hline -x^{5} & -x^{2} & -x \\ \hline x^{4} & -2x^{2} & -x \\ \hline -x^{4} & -x - 1 \\ \hline -2x^{2} - 2x - 1 \end{array}$$