MATH 314 Spring 2020 - Class Notes

2/19/2020
Scribe: Shania Foster
Summary: Today in class we covered Euler Phi Function and Euler's Theorem.

Notes:

Fermat's Little Theorem:

Does not work if modulus is not prime.
Take $\mathrm{n}=6, \mathrm{a}=4$
$a^{n-1} \equiv 4^{5} \equiv 4^{4} * 4$
Hint: $4^{4} \equiv 4(\bmod 6)$

Euler's Phi Function (or Euler's Totient Function):

$\varphi(\mathrm{n})=$ number of reminders $(\bmod n)$ have an inverse
$=$ number $[\operatorname{a}(\bmod n)$ or $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1]$

Examples:

$\overline{\varphi(26)}=12$
$\varphi(10)=4$
0,1,2,3,4,5,6,7,8,9 Cross out numbers without inverses
This leaves 1,3,7,9 left
Hint: If gcd is not 1, then no inverse. So $(5,10)=5$ so 5 gets crossed out
$\varphi(7)=6$
0,1,2,3,4,5,6 Cross out 0
This leaves $1,2,3,4,5,6$ left
$\varphi(\mathrm{p})=\mathrm{p}-1$
$\varphi(9)=\varphi\left(3^{2}\right)=6$
Above, you have $0,1,2,3,4,5,6,7,8$. You would need to cross out 0,3, and 6. That leaves 1,2, 4, 5, 7, 8 .
$\varphi(27)=\varphi\left(3^{3}\right)=18$
Above, you have 0-26. You would need to cross out 0,3,6,9,12,15,18,21,24 That leaves $1,2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26$.

$$
\begin{aligned}
& \varphi(81)=\varphi\left(3^{4}\right)=18^{*} 3=54 \\
& \varphi\left(3^{n}\right) 3^{n-1}=3^{n-1}(3-1) \\
& \varphi\left(p^{a}\right)=p^{a-1}(p-1) \\
& \varphi(\mathrm{p} \mathrm{q})=\varphi(p) \varphi(q) \\
& \varphi(\mathrm{n} \mathrm{~m})=\varphi(n) \varphi(m) \text { if } g c d(m, n)=1 \\
& \varphi(10)=\varphi\left(2^{*} 5\right)=\varphi(2) \varphi(5)=1^{*} 4=4 \\
& \varphi(26)=\varphi(2) \varphi(13)=1^{*} 12=12 \\
& \varphi(60)=\varphi(5 * 12)=\varphi(5) \varphi(12) \\
& =\varphi(5) \varphi(4) \varphi(3) \\
& \text { Side Note: } \varphi(4)=\varphi\left(2^{2}\right)=2^{1}(2-1)=2 \\
& =(4)^{*}(2)^{*}(2) \\
& =16 \\
& \varphi(100)=\varphi\left(2^{2} * 5^{2}\right)=\varphi\left(2^{2}\right) * \varphi\left(5^{2}\right) \\
& =2(20)=40
\end{aligned}
$$

Definitions

- m and n are coprime if $\operatorname{gcd}(m, n)=1$
- a $(\bmod n)$ is a residue $(\bmod n)$

Euclear Theorem: (Fermat's Little Theorem of Composite n)

If $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$ then $a^{\varphi(n)} \equiv 1(\bmod n)$
If $\mathrm{n}=\mathrm{p}$ is prime $\varphi(p)=\mathrm{p}-1$ we get Fermat's Theorem.
Example:
$\mathrm{n}=10, \mathrm{a}=3$
$\operatorname{gcd}(3,10)=1$
Eucler: $3^{\varphi(10)}(\bmod 10)$
$\equiv 3^{4} \equiv 81 \equiv 1(\bmod 10)$

Updated General Principle of modular exponents If we're working $(\bmod n)$ work $(\bmod \varphi(n))$ in the exponent.

If we have a ring (add, subtract, multiply) where we are also allowed to divide by everything but 0 , this is called a Field.

Example:

Integers don't work (5/2 not an integer) and neither do polynomials $1 / \mathrm{x}$
Rational Numbers
Complex Numbers
Real Numbers
Integers $(\bmod p) \mathbb{F p}$ (Side Note: The P is prime)
$\mathbb{F p}$ is called a Finite Field (or Galois Field)
Are there any fields with finitely many things in them that aren't integers $(\bmod p)$? Is there a field with 4 elements?

Integers $(\bmod 4)$ are not a field.
Addition (mod 4)

Aden
+0123
00123

11230
22301
33012
Multiplication $(\bmod 4)$
x 0123
00000
10123
20202 Not a field
30321
Polynomials with coefficients $(\bmod 2) \mathbb{F} 2[x]$
$g(x)=1 * x^{3}+1 * x^{2}+0 * x+1$
$=x^{3}+x^{2}+1$
$f(x)=x^{4}+x^{2}$
$\mathbf{f}(\mathbf{x})+\mathbf{g}(\mathbf{x})=\left(x^{3}+x^{2}+1\right)+\left(x^{4}+x^{2}\right)\left(x^{2}\right.$ cancels out $)$

$$
=x^{4}+x^{3}+1
$$

$\mathbf{f}(\mathbf{x}) \mathbf{g}(\mathbf{x})=\left(x^{3}+x^{2}+1\right)\left(x^{4}+x^{2}\right)$
$=\left(x^{7}+x^{6}+x^{4}\right)+\left(x^{5}+x^{4}+x^{2}\right)\left(x^{4}\right.$ cancels out $)$
$=x^{7}+x^{6}+x^{5}+x^{2}$
(mod 2) Addition and Subtraction are the same
$\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})=\left(x^{4}+x^{2}\right)-\left(x^{3}+x^{2}+1\right)$
$=x^{4}-x^{2}-1=x^{4}+x^{3}+1$
$\mathbb{F} 2[x]$ is a ring
$\mathrm{f}(\mathrm{x})=\mathrm{x}$ has no inverse
You can still do division of polynomials with remainder

$$
\left.x^{3}+x^{2}+1\right) \begin{gathered}
\frac{x-1}{x^{4}+x^{2}} \\
\frac{-x^{4}-x^{3}-x}{-x^{3}+x^{2}-x} \\
\frac{x^{3}+x^{2}+1}{2 x^{2}-x+1}
\end{gathered}
$$

So $x^{4}+x^{2} \equiv(x+1)\left(\bmod x^{3}+x^{2}+1\right)$
Example: Find what $x^{5}+x+1$ is $\left(\bmod x^{3}+x^{2}+1\right)$

$$
\begin{aligned}
& \left.x^{3}+x^{2}+1\right) \frac{x^{2}-x+1}{} \begin{array}{l}
\text { - } \\
\end{array} \\
& \begin{aligned}
-x^{5}-x^{4} & -x^{2} \\
\hline-x^{4} & -x^{2}
\end{aligned}+x \\
& \frac{x^{4}+x^{3}+x}{x^{3}-x^{2}+2 x+1} \\
& \frac{-x^{3}-x^{2}-1}{-2 x^{2}+2 x}
\end{aligned}
$$

So $x^{5+x+1} \equiv 0\left(\bmod x^{3}+x^{2}+1\right)$

