General Principle of Modular Exponents Mod a Prime Number

General Principle: Anytime we are working with exponents $(\bmod P)$, we can reduce the exponent (mod P-1).
Example: Find a value of x so that $\left(a^{3}\right)^{x} \equiv a(\bmod 11)$:
In calculus we'd do $\left(a^{3}\right)^{x} \quad x=1 / 3 \quad \sqrt[3]{a^{3}}=a \quad$ but, $(\bmod 11)$ forces x to be an integer.
Since 11 is prime, we instead use the General Principle to reduce the exponent to $(\bmod 10)$. In the exponent, we want $3 x \equiv 1(\bmod 10)$, so we need to find $3^{-1}(\bmod 10)$.
To do this, we use Euclid's algorithm $10=(3)(3)+1 \quad 1=1(10)-3(3) \quad 3^{-1} \equiv 7(\bmod 10)$. Therefore $\left(a^{3}\right)^{7} \equiv a(\bmod 11)$.

3 Pass Protocol

This protocol creates a secure message that is sent without the sender and recipient first agreeing on a key. To better understand the concept, this will be explain in both physical and mathematical terms.

Physical Terms: Imagine Alice has a safe that she locked with her padlock, and she wants to mail it to Bob. The problem is, Bob doesn't have Alice's padlock key and the key may be stolen if mailed. To solve this, first Alice mails the safe to Bob with her padlock on it. Second, Bob puts his own padlock on the safe (double locked), and mails it back to Alice. Third, Alice unlocks her padlock (leaving only Bob's), and mails it back to Bob again. Finally, Bob unlocks his padlock, and now he can open the safe.

Mathematical Terms: 1) Alice picks a very big prime number (to be secure, $P>10^{120}$)
2) Alice tells everyone what P is (does not need to be a secret).
3) Alice picks a secret number a $(2<a<P-1)$ where a $=$ Alice's key.
4) Bob picks a secret number $\mathrm{b}(2<b<P-1)$ where $\mathrm{b}=$ Bob's key.
5) Both Alice and Bob use Euclid's algorithm to compute their decryption keys. $A=a^{-1}(\bmod \mathrm{P}-1)$ and $B=b^{-1}(\bmod \mathrm{P}-1)$
6) Alice encrypts using $C 1=E(m) \equiv m^{a}(\bmod \mathrm{P})$ and sends C1 to Bob.
7) Bob encrypts using $C 2=E(C 1) \equiv C 1^{b}(\bmod \mathrm{P})$ and sends C 2 back to Alice.
8) Alice decrypts using $C 3=D(C 2) \equiv C 2^{A}(\bmod \mathrm{P})$ and sends C 3 back to Bob. Since $\left(m^{a * b}\right)^{A} \equiv m^{b}(\bmod P) \quad$ only Bob's encryption remains.
8) Bob decrypts using $C 4=D(C 3) \equiv C 3^{B}(\bmod \mathrm{P})$.

Since $\left(m^{b}\right)^{B} \equiv m(\bmod \mathrm{P}) \quad$ now Bob has the message.

Example: Message $={ }^{\prime} \mathrm{BE}^{\prime} \rightarrow 1,4 \rightarrow 14 \quad P=103 \quad a=95 \quad b=23$
Forwards: $\operatorname{gcd}(102,95) \quad 102=1(95)+7 \quad \operatorname{gcd}(95,7) \quad 95=13(7)+4 \quad \operatorname{gcd}(7,4)$
$7=1(4)+3 \quad \operatorname{gcd}(4,3) \quad 4=1(3)+1 \quad \operatorname{gcd}(3,1) \quad 3=3(1)+0$
Backwards: $1=4-1(3), \quad 3=7-1(4), \quad 4=95-13(7), \quad 7=102-1(95)$ $1=4-1(7-1(4)) \quad=-1(7)+2(4) \quad=-1(7)+2(95-13(7)) \quad=2(95)-27(7)$ $=2(95)-27(102-1(95)) \quad=-27(102)+29(95) \quad A \equiv 29(\bmod 102)$
Forwards: $\operatorname{gcd}(102,23) \quad 102=4(23)+10 \quad \operatorname{gcd}(23,10) \quad 23=2(10)+3$

$$
\operatorname{gcd}(10,3) \quad 10=3(3)+1 \quad \operatorname{gcd}(3,1) \quad 3=3(1)+0
$$

Backwards: $1=10-3(3), \quad 3=23-2(10), \quad 10=102-4(23)$,

$$
1=10-3(23-2(10))=-3(23)+7(10)=-3(23)+7(102-4(23))
$$

$$
=7(102)-31(23) \quad B \equiv-31(\bmod 102) \equiv 71(\bmod 102)
$$

Alice encrypts: $14^{95} \equiv 13(\bmod 103)$
Bob encrypts: $13^{23} \equiv 23(\bmod 103)$
Alice decrypts: $23^{29} \equiv 30(\bmod 103)$
Bob decrypts: $30^{71} \equiv 14(\bmod 103) \rightarrow{ }^{\prime} \mathrm{BE}^{\prime}=$ the original message.

Chinese Remainder Theorem (CRT)

If $\operatorname{gcd}(a, b)=1, x \equiv m(\bmod a)$, and $x \equiv n(\bmod b)$ then there exists a unique $y(\bmod a * b)$ such that $y \equiv x \equiv m(\bmod a)$ and $y \equiv x \equiv n(\bmod b)$.

Example: $a=2, b=13, m=1, n=4 \quad$ Find $x \equiv 1(\bmod 2)$ and $x \equiv 4(\bmod 13)$.
Forwards: $\operatorname{gcd}(13,2) \quad 13=6(2)+1 \quad \operatorname{gcd}(2,1) \quad 2=2(1)+0$
Backwards: $1=1(13)-6(2)$
CRT: $y=n * 1(13)-m * 6(2) \quad=1 * 1(13)-4 * 6(2) \quad=-35 \equiv 17(\bmod 2 * 13)$
Test: $17 \equiv 1(\bmod 2) \quad$ and $\quad 17 \equiv 4(\bmod 13)$.

Rings

A collection of things we can add, subtract, and multiply (but not necessarily divide) and still stay inside the collection (when regular rules of math apply).

Examples:

- Integers
- Real Numbers
- Complex Numbers
- Rational Numbers
- Modulus
- Matrices
- Polynomials

