MATH 314 Spring 2020 - Class Notes

02/12/2019
Scribe: Luke Dixon
Summary: Today's class included continued discussion and examples of Euclid's Algorithm, the Extended Euclidean Algorithm, Modular Exponetiation and Fermat's Little Theorem.

Notes:

Euclidean Algorithm continued

- compute $\operatorname{gcd}(72,26)=\operatorname{gcd}(26,20)$
- Division with remainder $=\operatorname{gcd}(20,6)$
- $72=(26)+20$
- $26=1(20)+6$
- $20=3(6)+2$
- $6=3(2)+0$
- Running time of Euclid's Algorithm is $\mathrm{O}\left(\log ^{2}(a+b)\right)$.

Extended Euclidean Algorithm
Theorem: If $\operatorname{gcd}(a, b)=d$, then by using Euclid's Algorithm backward we can find two integers m and n such that ma $+n b=d$ - linear combination of a and b.
$2=20-3(6)$
$6=26-1(20)$
$2=20-3(26-1(20))$
$2=-3(26)+4(20)$
$20=72-2(26)$
$2=-3(26)+4(72-2(26))$
$2=4(72)-11(26)$
If $\operatorname{gcd}(a, b)=1$ then there exist m and n so that $m a+n b=1$
reduce this $(\bmod b)$
$\operatorname{ma}+0=1(\bmod b)$
$\mathrm{ma}=1(\bmod \mathrm{~b})$
How to find inverse a $-1(\bmod n)$
Use Euclid's Algorithm to find gcd(a,n)
If this isn't 1, give up!
Use Euclid's Algorithm backward
to find k, l so that $\mathrm{ka}+\ln =1$
reduce $(\bmod n)$
$\mathrm{ka}=1(\bmod \mathrm{n})$
so $\mathrm{k}=\mathrm{a}$ inverse $-1(\bmod \mathrm{n})$
Example: solve $27 x+3=10(\bmod 50)$
$27 x=7(\bmod 50)$
We need inverse $27(\bmod 50)$
Apply Euclid's Algorithm gcd $(50,27)$
$50=1(27)+23$
$27=1(23)+4$
$23=5(4)+3$
$4=1(3)+1$
$3=3(1)+0$
so inverse $27=13(\bmod 50)$
$1=4-1(3)$
$3=23-5(4)$
$1=4-1(23-5(4))$
$=-1(23)+6(4)$
$4=27-1(23)$
$=-1(23)+6(27-1(23))$
$1=6(27)-7(23)$
$23=50-1(27)$
$1=6(27)-7(50-1(27))$
$1=-7(50)+13(27)$
$1=-7(50)+13(27)(\bmod 50)$
$1=13(27)(\bmod 50)$
$13(27)=13^{*} 7(\bmod 50)$
$\mathrm{X}=91=41(\bmod 50)$
$\mathrm{x}=41(\bmod 50)$
$\mathrm{a}=27$ in this case
Modular Exponentiation
compute a ${ }^{m}(\bmod n)$
write m in binary as a sum of powers of two.
Repeated Squaring

- square a as many times as digits in binary of m.
- reduce mod n every time and multiply together terms from binary expression for m.

Example: compute $3^{71}(\bmod 11)$
$71=64+4+2+1$
$2^{6}+2^{2}+2^{1}+2^{0}$
1000111_{2}

