MATH 314 Spring 2020 - Class Notes

2/12/2020
Scribe: Shania Foster
Summary: Today in class we covered Euclid's Algorithm, Modular Exponentiation, and Fermat's Theorem.l

Notes:

Theorem: If $\operatorname{gcd}(a, b)=d$, then by using Euclids Algorithm backward, we can find two integers m and n so that $\mathrm{am}+\mathrm{bn}=\mathrm{d}$
(a and b are a linear combination which gives us d)
This is called the extended euclidean algorithm

Example:

Take $\mathrm{a}=72$, and $\mathrm{b}=26$
find $\operatorname{gcd}(72,26)=\mathrm{d}$
then find $\mathrm{m} 72+\mathrm{n} 26=\mathrm{d}$

Forward
$\operatorname{gcd}(72,26)$
$72=2(26)+20$
$\operatorname{gcd}(26,20)=2$
$26=1(20)+6$
$\operatorname{gcd}(20,6)=2$
$20=3(6)+2$
$6=3(2)+0$

Work Backward

Solve each equation for the remainder
$2=20-3(6)$
$6=26-1(20)$
$20=72-2(26)$
$2=20-3(26-1(20))$

- $=20-3(26)+3(20)$
$2=4(20)-3(26)$
- $20=72-2(26)$

$$
\begin{aligned}
& 2=4(72-2(26))-3(26) \\
& 2=4(72)-11(26) \\
& m=4, \text { amd } n=-11
\end{aligned}
$$

Use this to find modular inverses
If $\operatorname{gcd}(a, b)=1$
Find m and n
$\mathrm{am}+\mathrm{bn}=1$ reduce $(\bmod b)$
$\mathrm{am}+\mathrm{bn} \equiv 1(\bmod b)$
bn gets replaced by 0
$a m \equiv 1(\bmod b)$
So $m \equiv a^{-1}(\bmod b)$
Use this to solve equations in $(\bmod n)$

Example:

Solve $27 \mathrm{x}+3 \equiv 10(\bmod 50)$
Find $27^{-1}(\bmod 50)$
Use Euclid's Algorithm
$27 \mathrm{x} \equiv 7(\bmod 50)$
Multiple both sides by 13
$13(27) \mathrm{x} \equiv 13(7) \quad(\bmod 50)$
$\mathrm{x} \equiv 91 \equiv 41(\bmod 50)$
$\mathrm{x}=41$

$$
\begin{aligned}
& \frac{\text { Example: }}{\text { gcd }(50,27)} \\
& 50=1(27)+23 \\
& 27=1(23)+4 \\
& 23=5(4)+3 \\
& 4=1(3)+1 \\
& 3=1(3)+0
\end{aligned}
$$

Work Backward

$1=4-1(3)$
$3=23-5(4)$
$4=27-1(23)$
$23=50-1(27)$
$1=4-1(23-5(4))$
$=-1(23)+6(4)$
(the 4 was moved over making 6)
$1=-1(23)+6(27-1(23))$
$=6(27)-7(23)$
$1=6(27)-7(50-1(27))$
$1=-7(50)+13(27)$
$13=27^{-1}(\bmod 50)$
Modular Exponentiation

Compute $a^{m}(\bmod n)$
a,m,n all big
Ex. Compute $3^{34}(\bmod 11)$
(Trick: repeated squaring
Write the exponent in binary (sum of powers of 2))
34 base $10=10010$ base 2
$34=32+2$
Repeated Squaring
$3^{1} \equiv 3(\bmod 11)$
$3^{2} \equiv 9(\bmod 11)$
$\left(3^{2}\right)^{2} \equiv 3^{4} \equiv 9^{2} \equiv 81 \equiv 4(\bmod 11)$
$3^{8} \equiv 4^{2} \equiv 16 \equiv 5(\bmod 11)$
$3^{16} \equiv 5^{2} \equiv 25 \equiv 3(\bmod 11)$
$3^{32} \equiv 3^{2} \equiv 9(\bmod 11)$
$3^{34} \equiv 3^{32+2}$
$\equiv\left(3^{32}\right)\left(3^{2}\right)(\bmod 11)$
$\equiv(9)(9)(\bmod 11)$
$\equiv 4(\bmod 11)$
What are the last two digits of 11^{70} ?
What is the $11^{70}(\bmod 100)$
$70=64+4+2$

$$
\begin{aligned}
& =2^{6}+2^{2}+2^{1} \\
& 1000110 \text { (Binary) }
\end{aligned}
$$

Repeated Squaring
$11^{1} \equiv 11(\bmod 100)$
$11^{2} \equiv 121 \equiv 21(\bmod 100)$
$11^{4} \equiv 21^{2} \equiv 41(\bmod 100)$
$11^{8} \equiv 41^{2} \equiv 81(\bmod 100)$
$11^{16} \equiv 81^{2} \equiv(-19)^{2}(\bmod 100)($ Because 81 is 19 less than 100$)$
$11^{32} \equiv 61^{2} \equiv 21(\bmod 100)$
$11^{64} \equiv 21^{2} \equiv 41(\bmod 100)$
$11^{70} \equiv 11^{64+4+2} \equiv\left(11^{64}\right)\left(11^{4}\right)\left(11^{21}\right)$
$\equiv(41)(41)(21)$
$\equiv(81)(21)$
$\equiv 01(\bmod 100)$
Even faster way if modulus is prime

Fermat's Little Theorem

If p is a prime number and p does not divide a then $a^{p-1} \equiv(\bmod p)$

$$
\begin{aligned}
& \text { Example: } \mathrm{p}=5 \\
& \mathrm{a}=1 \\
& 1^{5-1} \equiv 1^{4} \equiv 1(\bmod 5) \\
& \mathrm{a}=2 \\
& 2^{4} \equiv 16 \equiv 1(\bmod 5) \\
& \mathrm{a}=3 \\
& 3^{4} \equiv 81 \equiv 1(\bmod 5) \\
& \mathrm{a}=4 \\
& 4^{4} \equiv 256 \equiv 1(\bmod 5)
\end{aligned}
$$

Example: p=13
$\mathrm{a}=2$
$2^{13-1} \equiv 2^{12} \equiv 4096 \equiv 1(\bmod 13)$
Proof: Let $\mathrm{p}=(\mathrm{p}-1)$!
$=(\mathrm{p}-1)(\mathrm{p}-2) \ldots .(2)(1)$
a has an inverse $(\bmod p)$
$\operatorname{gcd}(\mathrm{a}, \mathrm{p})=1$
For each $\mathrm{i}, 1 \leq \mathrm{i} \leq(\mathrm{p}-1)$

If we compute $(\mathrm{a})(\mathrm{i})(\bmod p)$
We get another number between 1 and ($\mathrm{p}-1$)
If we take all of the numbers between 1 and ($\mathrm{p}-1$), multiply them all by the number a, we get all of the numbers between 1 and ($\mathrm{p}-1$) one time.

```
So (1a)(2a)(3a)...((p-1)a) (mod \(p)\)
\(=(1)(2) \ldots(\mathrm{p}-1) \quad(\bmod p)\)
\(\mathrm{p} \equiv 1(2) . .(\mathrm{p}-1)\)
\(\equiv(a 1)(a 2) . .(\mathrm{a}(\mathrm{p}-1))\)
\(\equiv\left(a^{p-1}\right)(1)(2) \ldots .(\mathrm{p}-1)\)
\(\equiv\left(a^{p-1}\right)(p)(\bmod p)\)
\(\mathrm{p} \equiv\left(a^{p-1}\right)(p)^{p-1}(\bmod p)\) You would then cancel on both sides with the inverse of \(p^{-1}\)
\(1 \equiv\left(a^{p-1}\right)(\bmod p)\)
```

