MATH 314 Spring 2020 - Class Notes

02/10/2020
Scribe: Luke Dixon
Summary: Today's class covered known Plaintext Attacks against the Hill Cipher; Onetime pad, perfect secrecy, conditional probability and introduced Euclid's Algorithm.

Notes:

ciphertext only

1. Frequency analysis on blocks.
2. Brute force - How many keys? Block size m $26 \mathrm{~m}^{2}$ possiblematrices.

- Both options work for small block sizes. Hill cipher is secure against ciphertext only if block size is large.
- or

Known plaintext attack

As long as we know more than m blocks of plaintext, we can break the key.
Ex. Suppose m $=2$.
plaintext: "door" - "CJNR"
$3,14,14,17-2,13,9,17$
$\mathrm{E}(3,14)=(3,14)[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}]=(2,13)$
$\mathrm{E}(14,17)=(14,17)[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}]=(9,17)$
$[3,14,14,17][\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}]=[2,13,9,17]$
Find the inverse of the matrix: $[3,14,14,17]^{-1}=(3 * 17-14 * 14)^{-1}=[17,12,12,3(\bmod 26)]$
$[3,14,14,17] \mathrm{K}=[2,13,9,17](\bmod 26)$
$(25-15)^{-1}$
$19[17,12,12,3]=[11,20,20,5]$
$[11,20,20,5][3,14,14,17]^{*} \mathrm{~K}=[11,20,20,5][2,13,9,7]$
$\mathrm{K}=[11,20,20,5][2,13,9,7]$
chosen plaintext pick "ba" 10
$\overline{\mathrm{E}}(1,0)=(1,0)[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}]=\mathrm{a}, \mathrm{b}$
$" a b "=(0,1)[a, b, c, d]=c, d$
you read off the key from above.
One-time pad
-Encryption is the same as the Vigenere Cipher
-key is the same length as plaintext
-completely random
-only used one time
-This cipher has perfect secrecy
-not very practical
Elementary Number Theory
want to compute $\operatorname{gcd}(\mathrm{n}, \mathrm{m})$ - aka: greatest common factor
Example: gcd $(35,85)$
One way: factor both numbers, find biggest factor dividing both
Euclid's Algorithm
use division with remainder.
Theorem: if a and b are positive integers, then there exists integers q and r such that a $=\mathrm{bq}+\mathrm{r}$
where 0 is less than or equal to r which is less than b
*Proof: Fix a and b.
pick our q
$\mathrm{q}=$ floor $(\mathrm{a} / \mathrm{b})$
compute $\mathrm{r}=\mathrm{a}-\mathrm{bq}$
add bq to both sides
$\mathrm{r}+\mathrm{bq}=\mathrm{a}$
-need to prove that $0 \leq r<b$
-to do this start with q,
multiply through by b
$a / b-1<q=|(a / b)| \leq a / b a-b<q b \leq a$ since $q b \leq a b 0 \leq a-q b=\mathrm{r}$ and $a-b<q b \mathrm{r}=a-q<b$

