Day 2 Notes

Emily Vogel

February 5, 2020

1 Abstract Theorems

1.1 A Divides B

Definition: We say 'a divides b' and write $a \mid b$ if $b=k a$ for some integer k.

1.1.1 Examples

$$
2 \mid 18 \equiv 18=9 \times 2
$$

In this case, $k=9$.

$$
2 \mid 0 \equiv 0=0 \times 2
$$

In this case, $k=0$. Note: This means that a/0 for every a.

1.2 B Modulo N

Definition: $a \equiv b \quad(\bmod n)$ and say "a is congruent to b modulo n" if $n \mid(a-b)$.

1.2.1 Examples

$$
\begin{gathered}
33 \equiv 3 \quad(\bmod 10) \\
33-3=30 \\
10 \mid 30 \\
27 \equiv 42 \quad(\bmod 5) \\
27-42=-15 \\
5 \mid-15
\end{gathered}
$$

1.3 Modulo Equivalency, Addition

If $a \equiv c \quad(\bmod n)$ and $b \equiv d \quad(\bmod n)$, then $a+b \equiv c+d \quad(\bmod n)$.

1.3.1 Examples

$12 \equiv 22 \quad(\bmod 10)$ and $7 \equiv 37 \quad(\bmod 10)$ then \ldots

$$
\begin{aligned}
12+7 & \equiv 22+37 \quad(\bmod 10) \\
19 & \equiv 59 \quad(\bmod 10)
\end{aligned}
$$

1.3.2 Proof of Theorem

Since $a \equiv c \quad(\bmod n)$, then $n \mid(a-c)$ so that means $a-c \equiv k \times n$ or $a=c+k \times n$ So:

$$
\begin{gathered}
a+b=(c+k \times n)+(d+l \times n) \\
=(c+d)+k \times n+l \times n \\
=c+d+n(k+l)
\end{gathered}
$$

Is $a+b \equiv c+d \quad(\bmod n)$?

$$
(a+b)-(c+d) \equiv-n(k+l)
$$

So yes, it is congruent.

1.4 Module Equivalency, Multiplication

If $a \equiv c \quad(\bmod n)$ and $b \equiv d \quad(\bmod n)$, then $a \times b \equiv c \times d \quad(\bmod n)$.

1.4.1 Proof of Theorem

$a=c+k \times n$ and $b=d+l \times n$. So:

$$
\begin{gathered}
a \times b=(c+k \times n) \times(d+l \times n) \\
=c d+c l n+d k n+k l^{2} \\
=c d+n \times(c l+d k+k l n)
\end{gathered}
$$

So $a b=c d+n j$, where j is an integer so $a b \equiv c d \quad(\bmod n)$.

1.5 Final Note

You can add, subtract, and multiply a and b but you can't always divide.

2 Affine Cipher (aka a better Caesar Cipher)

Pick a key, two integers α and β. Assume $0 \leq \alpha, \beta \leq 25$. For instance,

$$
E(x)=\alpha x+\beta \quad(\bmod 26)
$$

2.1 Encryption Example

$\alpha=7, \beta=20-$ This is the key. Plaintext is 'at' or 019 .

$$
\begin{gathered}
E(0)=7(0)+20 \quad(\bmod 26) \\
=20
\end{gathered}
$$

or 'U'

$$
\begin{gathered}
E(19)=7(19)+20 \quad(\bmod 26) \\
=153 \quad(\bmod 26) \\
=23
\end{gathered}
$$

or ' X '
Ciphertext is equal to 'UX'.

2.2 Decryption Example

$$
\begin{aligned}
y=E(x) & =\alpha x+\beta \quad(\bmod 26) \\
y-\beta & =\alpha x \quad(\bmod 26)
\end{aligned}
$$

But we can't divide all numbers (can't take the mod of a fraction). So we must find a number α^{-1} where $\alpha^{-1} \alpha \equiv 1(\bmod 26)$. If α^{-1} exists, multiply both sides by α^{-1}. So:

$$
\begin{gathered}
\alpha^{-1}(y-\beta) \equiv \alpha^{-1} \alpha x \quad(\bmod 26) \\
\equiv x \quad(\bmod 26)
\end{gathered}
$$

Which gives us:

$$
D(y)=\alpha^{-1}(y-\beta)
$$

By using the table in the schedule, if $\alpha=7$ then $\alpha^{-1}=15$.

$$
\begin{gathered}
D(y)=15(y-20) \quad(\bmod 26) \\
=15 y+15 \times 6 \quad(\bmod 26) \\
=15 y+12
\end{gathered}
$$

Note: β went from -20 to 6 because we needed a positive number between 0 and 26, so we added 26 to the number. 15×6 turned into 12 because we looked at the table to find the answer (not modulo 26).

$$
\begin{aligned}
D(20) & \equiv 15(20)+12 \quad(\bmod 26) \\
& \equiv 14+12 \quad(\bmod 26)
\end{aligned}
$$

Which is equivalent to ' a '.

$$
\begin{aligned}
D(23) & \equiv 15(23)+12 \quad(\bmod 26) \\
& \equiv 7+12 \quad(\bmod 26)
\end{aligned}
$$

Which is equivalent to ' t '.

2.2.1 Potential Problems

There can be one α that can map to multiple α^{-1} s. This means that the decrypted message could be wrong. What we do instead when we first pick an α is make sure the row contains only one 1 . This leaves out the even numbers and the number 13 from being chosen.

3 Attacking the Affine Cipher

3.1 Ciphertext Only

You can use brute force for value pairs of α and β. This leaves 12 possibilities for α and 26 for β, for a total of $12 \times 26=312$ possibilities.

3.2 Chosen Plaintext

Pick α to be 0 , or 'a'.

$$
E(0)=\alpha(0)+\beta=\beta
$$

Then pick α to be 1 , or ' b '.

$$
\begin{gathered}
E(1)=\alpha(1)+\beta \\
E(1)-\beta=\alpha
\end{gathered}
$$

3.3 Known Plaintext

Suppose 'it' maps to 'OH' $(8,19->14,7)$. We can use some principles in algebra to find the key α and β.

$$
\begin{gathered}
\alpha(8)+\beta \equiv 14 \quad(\bmod 26) \\
-\alpha(19)+\beta \equiv 7 \quad(\bmod 26) \\
=\alpha(-11) \equiv 7 \quad(\bmod 26)
\end{gathered}
$$

or

$$
=\alpha(15) \equiv 7 \quad(\bmod 26)
$$

We pull up the table to find α^{-1} of 15 , which is 7 . So,

$$
\begin{gathered}
7 \times \alpha \times 15 \equiv 7 \times 7 \quad(\bmod 26) \\
\alpha \equiv 23
\end{gathered}
$$

Now we plug it in to find β,

$$
\begin{gathered}
23(8)+\beta \equiv 14 \quad(\bmod 26) \\
2+\beta \equiv 14 \quad(\bmod 26) \\
\beta \equiv 12
\end{gathered}
$$

