MATH 314 Spring 2020 - Class Notes

01/29/2020

Scribe: Andrew Noonan

Summary: The Affine Cipher and cryptoanalysis. The Affine Cipher is a mono-alphabetic cipher with the key (α, β)

Notes:

- Affine Cipher Encryption / Decryption
 - Keys (α, β) , where $\alpha \mathrel{!=}$ even or 13 and $0 \le \beta \le 25(312 \text{ possibilities})$
 - $\mathbf{E}(\mathbf{X}) = \alpha x + \beta$
 - $D(y) = (\alpha^{-1}y) \beta$
- Attacking Affine
 - 1. Chosen Plaintext

Pick α to be a (0) and read off β

 $\mathbf{E}(0) = \alpha(0) + \beta \equiv \beta$

Pick α to be b (1) then subtract β from the Ciphertext E(b)

$$E(1) = \alpha (1) + \beta$$
$$\alpha = E(1) - \beta$$

- 2. Known plaintext See examples
- 3. Ciphertext only

Brute force can be used to break the cipher since there are only 312 possibilities for K (12 α 's, 25 β 's)

- Theorems
 - 1. A|B|

Definiton: 'A divides B' if b = ka, where $k \in \mathbb{Z}$

2. $A \equiv B \pmod{M}$

Definition: 'A is equivalent to B (mod M)' if n|(a-b)

3. It is possible to add, subtract, and multiply, however, you cannot divide in mod M (This requires an inverse)

Examples: Encryption — Decryption — Known Plaintext Attack

• cup encrypts to OYB

 $E(2) \equiv \alpha(2) + \beta \equiv 14$ $E(20) \equiv \alpha(20) + \beta \equiv 23$ $E(15) \equiv \alpha(15) + \beta \equiv 1$

• find inverse of α , then find α :

$$\alpha(20) + \beta \equiv 24$$

- $\alpha(15) + \beta \equiv 1$
$$5^{-1} \equiv 21$$

 $\alpha(5) * 5^{-1} \equiv 23 * 21 \equiv 15 \pmod{26}$
 $\alpha \equiv 15$

- find β
 - $E(2) \equiv 15(2) + \beta \equiv 14(mod26)$ $E(2) \equiv 4 + \beta \equiv 14(mod26)$
 - $E(2) \equiv \beta \equiv 10 (mod26)$
- $E(x) \equiv 15(x) + 10(mod26)$