MATH 314 Sprint 2020 - Class Notes

$1 / 27 / 20$
Scribe: Cameron Crow
Summary: Ceaser Cipher
Ceaser Cipher: The Ceaser or Shift cipher is a symmetric key cryptosystem which adjusts all of the letters of the plain text by a set key length to recieve the cipher text

- The key for Ceasser cipher is the number of letters each plaintext letter will be shifted.
- a key length of 3 will burn the letter a to D, b to E and so forth
- Encryption: $E(x) \equiv x+k(\bmod 26)$ where k is the key
- Example: let the key length be 7 , or $\mathrm{k}=7$ and let the plain text be the word bat.

$$
\begin{aligned}
& E(b)=1+7 \equiv 8(\bmod 26) \\
& E(a)=0+7 \equiv 7(\bmod 26) \\
& E(t)=19+7 \equiv 0(\bmod 26)
\end{aligned}
$$

- taking the values of 870 we get the ciphertext IHA
- Decryption: $D(y) \equiv y-k(\bmod 26)$ where k is the key
- Example: let the key length be 7 , or $\mathrm{k}=7$ and let the ciphertext be the letters IHA.

$$
\begin{gathered}
D(I)=8-7 \equiv 1(\bmod 26) \\
D(H)=7-7 \equiv 0(\bmod 26) \\
D(A)=0-7 \equiv 19(\bmod 26)
\end{gathered}
$$

- taking the values of 1019 we get the plaintext BAT
- There are 26 possible keys for Ceaser cipher, only 25 being actually useful. This is limited by our modulus 26 .

How do you attack the Ceaser Cipher:

- Kerckchoff's Principle: when analyzing the security of a cryptosystem you should assume the attacker knows everything about the system except the key itself
- there are three possible attack types

1. Ciphertext Only: Eve only sees the ciphertext. Goal: get the plaintext or better, the key.
2. Known Plaintext: Eve knows the ciphertext and the corresponding plaintext. Goal: get the key
3. Chosen Plaintext: Eve chooses the plaintext and gets to encrypt using Alice and Bob's cipher. Goal: get the key

- how do you attack the Ceaser cipher specifically

1. Ciphertext Only: Brute force, or use frequency analysis
2. Known Plaintext: suppose that Eve learns the ciphertext character N (13) corresponds to the plaintext character y (24) to find the key Eve uses the formula

$$
24+k \equiv 13(\bmod 26)
$$

by subtracting 24 from both sides, and using modular arthithmatic Eve finds that the key is 15
3. Chosen Plaintext: Eve simply picks the letter a and finds the shift because $\mathrm{a}=0$ so

$$
0+k \equiv k(\bmod 26)
$$

